首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   10篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1938年   1篇
排序方式: 共有98条查询结果,搜索用时 132 毫秒
1.
1. Glycoproteins were isolated from the plasma of sheep, goat, cow, buffalo and monkey. They were homogeneous by electrophoresis; on ultracentrifugation, a faster-sedimenting fraction, to an extent of 5–8% only, was observed in each case. 2. Similar physical properties were exhibited by these glycoproteins and they each have a molecular weight of about 105000. 3. In chemical composition, differences have been observed and the glycoproteins can be classified into three groups: (a) sheep and goat glycoproteins; (b) cow and buffalo glycoproteins; (c) monkey glycoprotein. Glucose, galactosamine and N-terminal amino acid were absent from these proteins. 4. These glycoproteins were trypsin inhibitors and prolonged the clotting time of plasma.  相似文献   
2.

Phosphorus (P) is an essential macronutrient to all crops including rice and it plays a key role in various plant activities and development. Low availability of P in the soils negatively, influences rice crop growth and causes significant yield loss. In the present study, we characterized a set of 56 germplasm lines for their tolerance to low soil P by screening them at low soil P and optimum soil P levels along with low soil P tolerant and sensitive check varieties. These lines were genotyped for the presence/absence of tolerant allele with respect to the major low soil P tolerance QTL, Pup1, using a set of locus specific PCR-based markers, viz., K46-1, K46-2, K52 and K46CG-1. High genetic variability was observed for various traits associated with low soil P tolerance. The yield parameters from normal and low soil P conditions were used to calculate stress tolerance indices and classify the genotypes according to their tolerance level. Out of the total germplasm lines screened, 15 lines were found to be tolerant to low soil P condition based on the yield reduction in comparison to the tolerant check, but most of them harbored the complete or partial Pup1 locus. Interestingly, two tolerant germplasm lines, IC216831 and IC216903 were observed to be completely devoid of Pup1 and hence they can be explored for new loci underlying low soil P tolerance.

  相似文献   
3.
Russian Journal of Bioorganic Chemistry - A series of novel carbazol-thiazolidinedione hybrid derivatives were designed, synthesised and screened for antimicrobial activity against gram-positive...  相似文献   
4.
Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.  相似文献   
5.
The efficiency of glycosidation reactions generally involves a high chemical yield, as well as high/complete stereo- and regioselectivity. All these depend on the compatibility of the reactivity of glycosyl donors and acceptors. Among glycosyl donors, thioglycosides are widely used because of their high degree of stability in many organic reactions. Although there are number of methods available for the preparation of thioglycosides, all of them have one or more disadvantages, especially concerning the time factor and cumbersome workup procedures. Here we report a convenient and high-yielding method for the preparation of thioglycosides.  相似文献   
6.
Trauma-hemorrhage producesprofound immunosuppression in males but not in proestrus females.Prior castration or flutamide treatment of males followingtrauma-hemorrhage prevents immunosuppression, implicating5-dihydrotestosterone for the immunosuppressive effects. 5-Dihydrotestosterone, a high-affinity androgen receptor-binding steroid, is synthesized in tissues as needed and seldom accumulates. The presence of steroidogenic enzymes in T lymphocytes suggests bothsynthesis and catabolism of 5-dihydrotestosterone. We hypothesized, therefore, that the basis for high 5-dihydrotestosterone activity inT lymphocytes of males following trauma-hemorrhage is due to decreasedcatabolism. Accordingly, catabolism of 5-dihydrotestosterone wasassessed in splenic T lymphocytes by examining the activity andexpression of enzymes involved. Analysis showed increased synthesis anddecreased catabolism of 5-dihydrotestosterone in intact male Tlymphocytes following trauma-hemorrhage. In contrast, reduced5-reductase activity and increased expression of17-hydroxysteroid dehydrogenase oxidative isomers suggestinactivation of 5-dihydrotestosterone in precastrated males. Thusour study suggests increased synthesis and decreased catabolism of5-dihydrotestosterone as a reason for loss of T lymphocyte functionsin intact males following trauma-hemorrhage, as evidenced by decreasedrelease of interleukin-2 and -6.

  相似文献   
7.
In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.In humans, it has long been recognized that the reproductive age of the parents has an influence on the health of their progeny. An older reproductive age of the mother is known to increase the fraction of aneuploid gamete formation (Hurles, 2012). For instance, the risk for a trisomy increases from 2% to 3% for mothers in their 20s to more than 30% for mothers in their 40s (Hassold and Hunt, 2009). The age of the father also has an effect on the frequency of spontaneous congenital disorders and common complex diseases, such as autism and some cancers (Goriely and Wilkie, 2012). Indeed, sperm from 36- to 57-year-old men have more double-strand breaks (DSBs) than those of 20- to 35-year-old individuals (Singh et al., 2003). Similarly, the efficiency of DSB repair was reported to decrease with age in vegetative tissues of the plant model system Arabidopsis (Arabidopsis thaliana; Boyko et al., 2006).Owing to the continuous divisions of spermatogonial stem cells, the male germline of humans is thought to be more mutagenic than the female germline. Indeed, it was shown that the paternal germline is more mutagenic than the maternal one with respect to base substitutions (Kong et al., 2012) and replication slippage errors at microsatellites (Sun et al., 2012). It is also known that carriers of germline mutations in mismatch repair (MMR) genes in humans are prone to get colorectal cancer and that the risk depends on the parent-of-origin of the mutation (van Vliet et al., 2011). The molecular basis of these parental effects is not entirely clear but is likely to involve higher rates of nondisjunction during female meiosis, higher mutation rates during spermatogenesis, and probably additional effects of aging.In contrast to the effect of parental age on germline mutations, not much is known about potential effects of parental reproductive age on somatic mutation rates in the offspring. However, it has been shown in animal studies that radiation of males can lead to somatic mutations in their progeny—and subsequent generations—that cannot be attributed to mutations in the paternal germline (for review, see Little et al., 2013). Moreover, several recent studies have illustrated the existence of complex parental and transgenerational effects in humans, although their molecular basis is not clear (Grossniklaus et al., 2013). These effects can be of either genetic nature (but the effect is seen even in offspring that did not inherit the genetic variant from their parents; for review, see Nadeau, 2009) or epigenetic nature (where environmental influences can possibly exert effects on subsequent generations; for review, see Pembrey et al., 2006; Pembrey, 2010; Curley et al., 2011). It is currently not known whether such parental effects affect the somatic mutation rates in the offspring or whether the effects are modulated by parental age.Taking advantage of the plant model system Arabidopsis, in which various somatic mutation rates can readily be assessed (Bashir et al., 2014), we investigated the effects of parental reproductive age on somatic mutation rates in the progeny. We report that there is a pronounced effect of parental age on somatic mutation rates in their offspring in a parent-of-origin-dependent fashion. Thus, some form of parental information, which is inherited through the gametes to the next generation, seems to alter the somatic mutation rates in the progeny and changes with parental reproductive age.  相似文献   
8.
9.
10.
Prolactin (PRL) is involved in the regulation of immune functions under normal and pathological conditions. Trauma-hemorrhage (T-H) produces profound immunosuppression in male mice but not in proestrus female mice. Administration of PRL in males after T-H, however, restores immune functions. In this study, PRL+/+ and transgenic (PRL–/–) male and female mice were used to assess immune suppression after T-H and to determine the reasons for the hormone's beneficial effect. In vitro lymphoproliferation assay with Nb2 cells showed complete absence of PRL in the circulation of the transgenic PRL–/– mice of both sexes, whereas very high levels of the hormone were detected in the wild-type PRL+/+ mice of both sexes. Moreover, T-H resulted in the appearance of significant levels of the hormone in circulation, but only in PRL+/+ mice. Splenocyte proliferation in male PRL–/– mice was significantly lower than in PRL+/+ mice after T-H. Marginal differences between PRL+/+ and PRL–/– mice were observed in the release of IL-2 and IFN- by splenocytes, while the release of IL-10 was significantly higher in PRL–/– than in PRL+/+ mice. A significant observation of our study is the release of a 25-kDa protein in the concanavalin A-stimulated splenocytes of male PRL+/+ and PRL–/– mice that was active in the in vitro lymphoproliferation assay with Nb2 cells. It is unlikely that this protein is PRL because it is also present in the splenocyte extracts of PRL–/– transgenic mice. Nonetheless, because control of lymphoid cell proliferation is considered one of the characteristics of the immune system, the local release of this protein may be significant in the differences observed in splenocyte cytokine release after T-H in wild-type as well as transgenic mice. Nb2 cells; cytokines; immune functions  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号