首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   8篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1986年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
Hansen solubility parameters (HSPs), often used to predict the miscibility between two compounds, are an alternative tool in evaluating the ability of the solvent to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. The aim of this paper is to find a simple way to calculate HSPs for complex mixtures of triglycerides (TAGs). HSPs were calculated using two approaches: the first assumes that the contributions to the dispersion, dipole-dipole, and hydrogen bonding interactions may be subdivided into larger functional moieties (i.e., fatty acids and fatty acid methyl esters) that are additive, while the second approach assumes that vegetable oils are comprised of mixtures of simple TAGs in the same mass fractions as the fatty acids. The HSPs obtained using the two approaches are compared to reference values determined using the “Hansen Solubility Parameters in Practice” software (HSPiP) considering the complex TAG profile for each vegetable oil.HSPs for vegetable oils, obtained with the HSPiP software, did not correspond well to the HSPs obtained from the group contribution approach, when using fatty acids, fatty acids + glycerol or fatty acid methyl esters. In contrast, the HSPs calculated for vegetable oils, assuming that all TAGs are simple and in the same mass fractions as the fatty acids, provide similar values to the HSPs obtained from the HSPiP software. Therefore, it is possible to calculate the HSPs for complex oils by simply knowing the fatty acid composition. Knowledge of HSPs may be used to rationalize the ability of certain low molecular weight molecules to develop organogels in vegetable oils as well as the crystallization of triglycerides.  相似文献   
2.
In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal differences in the kinetics of anti-NBL and ML Ab responses. While anti-NBL Abs declined slowly from day 19 until the end of the experiment, Abs to ML antigen remained high in the same period. It is remarkable the optimal Ab response to NBL antigens with 2000 ML infective dose and the reduced number of NBL antigens identified throughout the experimental T. spiralis infection, standing out the immunodominant 49 kDa antigen. Interestingly, this antigen, which was prominently expressed in NBL somatic proteins, was also detected in NBL-ESP.  相似文献   
3.
Translation initiation plays an important role in cell growth, proliferation, and survival. The translation initiation factor eIF4B (eukaryotic initiation factor 4B) stimulates the RNA helicase activity of eIF4A in unwinding secondary structures in the 5′ untranslated region (5′UTR) of the mRNA in vitro. Here, we studied the effects of eIF4B depletion in cells using RNA interference (RNAi). In agreement with the role of eIF4B in translation initiation, its depletion resulted in inhibition of this step. Selective reduction of translation was observed for mRNAs harboring strong to moderate secondary structures in their 5′UTRs. These mRNAs encode proteins, which function in cell proliferation (Cdc25C, c-myc, and ODC [ornithine decarboxylase]) and survival (Bcl-2 and XIAP [X-linked inhibitor of apoptosis]). Furthermore, eIF4B silencing led to decreased proliferation rates, promoted caspase-dependent apoptosis, and further sensitized cells to camptothecin-induced cell death. These results demonstrate that eIF4B is required for cell proliferation and survival by regulating the translation of proliferative and prosurvival mRNAs.Targeting the translation initiation pathway is emerging as a potential therapy for inhibiting cancer cell growth (35, 38). Ribosome recruitment to the 5′ ends of eukaryotic mRNAs proceeds via translation initiation mechanisms that are dependent either on the 5′ cap structure (m7GpppN, where N is any nucleotide) or an internal ribosome entry site (IRES). The majority of translation initiation events in eukaryotes are mediated through cap-dependent translation whereby the 40S ribosomal subunit is recruited to the vicinity of the mRNA 5′ cap structure by the eukaryotic initiation factor 4F (eIF4F) complex. eIF4F is comprised of eIF4E (the cap-binding subunit), eIF4A (an RNA helicase), and eIF4G (a large scaffolding protein for eIF4E, eIF4A, and other initiation factors). Once assembled at the 5′ cap, the 40S ribosomal subunit in association with several initiation factors scans the 5′ untranslated region (5′UTR) of the mRNA until it encounters a start codon in a favorable context, followed by polypeptide synthesis (37).Early in vitro studies have shown that the initiation factor eIF4B acts to potentiate ribosome recruitment to the mRNA (3, 45). eIF4B stimulates translation of both capped and uncapped mRNAs in vitro (1, 36). This function is exerted through stimulation of the helicase activity of eIF4A (43), possibly through direct interactions with eIF4A (44) or with mRNA, the ribosome-associated eIF3, and 18S rRNA (28, 29, 44). Thus, eIF4B is thought to form auxiliary bridges between the mRNA and the 40S ribosomal subunit. Toeprinting studies using mammalian eIF4B underscored its importance in the assembly of the 48S initiation complex, especially on mRNAs harboring secondary structures in the 5′UTRs (11).In vivo studies of eIF4B are limited. Ectopic expression of eIF4B in cultured Drosophila melanogaster cells and in developing eye imaginal discs stimulated cell proliferation (16). Enhanced cell proliferation is most likely mediated by increased translation of a subset of mRNAs, since knockdown of Drosophila eIF4B by RNA interference (RNAi) caused a modest reduction in global translation but compromised the survival of insect cells grown under low serum conditions (16). Studies of eIF4B in mammalian cells yielded contradictory results. Transient overexpression of eIF4B stimulated translation initiation in a phosphorylation-dependent manner in some cells (18, 49) while inhibiting translation in others (30, 31, 41). These differences might be attributed to disparate levels of eIF4B overexpression.To address the physiological role of eIF4B in mRNA translation in the cell, RNAi knockdown of eIF4B was used here. We demonstrate that eIF4B is required for optimal translation. Importantly, the translation of mRNAs bearing structured 5′UTRs, such as the cell cycle regulators Cdc25C, c-myc, and ODC (ornithine decarboxylase), and the antiapoptotic factors Bcl-2 and XIAP (X-linked inhibitor of apoptosis), was reduced as a result of eIF4B silencing by RNAi. Furthermore, eIF4B silencing promoted caspase-dependent apoptosis. Thus, we show that mammalian eIF4B is required for cell proliferation and survival, whereby it acts by regulating the translation of a functionally related subset of mRNAs.  相似文献   
4.
Messenger RNA translation or protein synthesis, is a fundamental biological process affecting cell growth, survival and proliferation. Initiation is the rate limiting and hence the most regulated step of translation. In eukaryotes, translation initiation is facilitated by multiple protein factors collectively called eIFs (for eukaryotic translation initiation factors). The complex consisting of the eIF4 group factors including the mRNA cap-binding eIF4E protein, large scaffolding protein eIF4G and RNA helicase eIF4A is assisted by the eIF4B co-factor to unwind local secondary structures and create a ribosome landing pad on mRNA. Recruitment of the ribosome and augmentation in the mRNA scanning process culminates in the positioning of the ribosome over the start codon. Deregulated translational control is believed to play an important role in oncogenic transformation. Indeed, many eIFs are bona fide proto-oncogenes. In many types of human cancers, eIFs are either overexpressed or ectopically activated by Ras-MAPK and PI3K-mTOR signaling cascades, resulting in increased survival and accelerated proliferation. In this review we will analyze the bulk of data describing eIF4B and its role in cell survival and proliferation. Recent studies have shown that eIF4B is phosphorylated and activated by Ras-MAPK and PI3K-mTOR signaling cascades. In addition, eIF4B regulates translation of proliferative and pro-survival mRNAs. Moreover, eIF4B depletion in cancer cells attenuates proliferation, sensitizes them to genotoxic stress-driven apoptosis. Taken together, these findings identify eIF4B as a potential target for development of anti-cancer therapies.Key words: eIF4B, translation, signaling, structured 5′UTR, helicase activity, survival, proliferation, apoptosis  相似文献   
5.
Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire-Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming.  相似文献   
6.
The reproductive success of animal-dispersed plants is closely linked to the number of seeds that they are able to disperse. The fruit crop size hypothesis states that a plant with large fruit crop size will attract more dispersers than a plant with a smaller fruit crop, which may result in more seeds being dispersed from the foremost. In this study, we experimentally examined the effect of crop size and other factors on primary seed dispersal in a neotropical shrub/tree, Casearia corymbosa (Flacourtiaceae). We used two predictive variables of reproductive success, which produce an accurate picture of seed dispersal ratio: fruit removal efficiency (proportion of a fruit crop removed by frugivores) and fruit removal success (relative contribution of each individual tree to the number of fruits removed in the population). We established two levels of fruit crop size at the C. corymbosa individuals, using plants with large (150 fruits) and small crops (50 fruits). We found that individual plants with larger crops had significantly higher values of fruit removal efficiency (92.6%) and success (5%) than plants with smaller crops (69.3% and 1.3%, respectively). Fruit removal efficiency was related to vegetation type, plant height and fruit width, but the variance explained by these variables was low ( < 8%). Fruit removal success was significantly related to crop size ( > 90% of the variance explained). These results suggest that fruit removal efficiency and success are strongly related to fruit crop size of C. corymbosa plants.  相似文献   
7.
8.
In the present study we have explored structural determinants of the functional interaction between skeletal muscle ryanodine receptor (RyR1) and transient receptor potential channel 1 (TRPC1) channels expressed in Chinese hamster ovary cells. We have illustrated a functional interaction between TRPC1 channels and RyR1 for the regulation of store-operated calcium entry (SOCE) initiated after releasing calcium from a caffeine-sensitive intracellular calcium pool. RNA interference experiments directed to reduce the amount of TRPC1 protein indicate that RyR1 associates to at least two different types of store-operated channels (SOCs), one dependent and one independent of TRPC1. In contrast, bradykinin-induced SOCE is completely dependent on the presence of TRPC1 protein, as we have previously illustrated. Removing the foot structure from RyR1 results in normal caffeine-induced release of calcium from internal stores but abolishes the activation of SOCE, indicating that this structure is require for functional coupling to SOCs. The footless RyR1 protein shows a different cellular localization when compared with wild type RyR1. The later protein shows a higher percentage of colocalization with FM-464, a marker of plasma membrane. The implications of the foot structure for the functional and physical coupling to TRPC and SOCs is discussed.  相似文献   
9.
For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2 fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2 fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm?2 at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.  相似文献   
10.
Caenorhabditis elegans is frequently used as a model species for the study of bacterial virulence and innate immunity. In recent years, diverse mechanisms contributing to the nematode''s immune response to bacterial infection have been discovered. Yet despite growing interest in the biochemical and molecular basis of nematode-bacterium associations, many questions remain about their ecology. Although recent studies have demonstrated that free-living nematodes could act as vectors of opportunistic pathogens in soil, the extent to which worms may contribute to the persistence and spread of these bacteria has not been quantified. We conducted a series of experiments to test whether colonization of and transmission between C. elegans nematodes could enable two opportunistic pathogens (Salmonella enterica and Pseudomonas aeruginosa) to spread on agar plates occupied by Escherichia coli. We monitored the transmission of S. enterica and P. aeruginosa from single infected nematodes to their progeny and measured bacterial loads both within worms and on the plates. In particular, we analyzed three factors affecting the dynamics of bacteria: (i) initial source of the bacteria, (ii) bacterial species, and (iii) feeding behavior of the host. Results demonstrate that worms increased the spread of bacteria through shedding and transmission. Furthermore, we found that despite P. aeruginosa''s relatively high transmission rate among worms, its pathogenic effects reduced the overall number of worms colonized. This study opens new avenues to understand the role of nematodes in the epidemiology and evolution of pathogenic bacteria in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号