首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2021年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2006年   1篇
  2005年   2篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
2.
In contrast to damage of genomic DNA and despite its potential to affect cell physiology, RNA damage is a poorly examined field in biomedical research. Potential triggers of RNA damage as well as its pathophysiological implications remain largely unknown. While less lethal than mutations in genome, such non-acutely lethal insults to cells have been recently associated with underlying mechanisms of several human chronic diseases. We investigated whether RNA damage could be related to the exposure of particular xenobiotics by testing the RNA-damaging activity of a series of chemicals with different mechanisms of action. Cultured human T-lymphoblastoid cells were treated with ethyl methanesulfonate (EMS), H(2)O(2), doxorubicin, spermine, or S-nitroso-N-acetylpenicillamine (SNAP). Furthermore, we studied the potential protective activity of a pomegranate extract against RNA damage induced by different chemicals. Special attention has been paid to the protective mechanisms of the extract. The protective effect of pomegranate can be mediated by alterations of the rates of toxic agent absorption and uptake, by trapping of electrophiles as well as free radicals, and protection of nucleophilic sites in RNA. We used two different treatment protocols (pre- and co-treatment) for understanding the mechanism of the inhibitory activity of pomegranate. We demonstrated that total RNA is susceptible to chemical attack. A degradation of total RNA could be accomplished with doxorubicin, H(2)O(2), spermine and SNAP. However, EMS, a well-known DNA-damaging agent, was devoid of RNA-damaging properties, while spermine and SNAP, although lacking of DNA-damaging properties, were able to damage RNA. Pomegranate reduced the RNA-damaging effect of doxorubicin, H(2)O(2), and spermine. Its inhibitory activity could be related with its ability to forms complexes with doxorubicin and H(2)O(2), or interacts with the intracellular formation of reactive species mediating their toxicity. For spermine, an alteration of the rates of spermine absorption and uptake can also be involved.  相似文献   
3.
Novel bisbenzimidazoles (46), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 46 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC50 = 1 × 10?6 M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5 h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC50 = 4.3 × 10?6 M).  相似文献   
4.
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.  相似文献   
5.
In mouse models of food allergy, we recently characterized a new CD23b-derived splice form lacking extracellular exon 5, bDelta5, which undergoes constitutive internalization and mediates the transepithelial transport of free IgE, whereas classical CD23b is more efficient in transporting IgE/allergen complexes. These data suggested that regulation of endocytosis plays a central role in CD23 functions and drove us to systematically compare the intracellular trafficking properties of human and murine CD23 splice forms. We found that CD23 species show similar endocytic behaviors in both species; CD23a undergoes constitutive clathrin-dependent internalization, whereas CD23b is stable at the plasma membrane. However, the mechanisms controlling these similar behaviors appeared to be different. In mice, a positive internalization signal was localized in the cytoplasmic region shared by all CD23 splice forms. This positive signal was negatively regulated by the intracellular CD23b-specific exon. In addition, the fact that alternative splice forms lacking exons of the extracellular region (5, 6, 7, and/or 8) were all constitutively internalized suggested that endocytosis of murine CD23 is regulated by a process similar to the outside-in signaling of integrins. In humans, the internalization signal was mapped in the CD23a-specific intracellular exon. Interestingly, this signal also behaved as a basolateral targeting signal in polarized Madin-Darby canine kidney cells. The latter result and the fact that human intestinal cell lines were found to coexpress both CD23a and CD23b provide a molecular explanation for the initial observations that CD23 was found at the basolateral membrane of intestinal epithelial cells from allergic patients.  相似文献   
6.

Purpose

The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple.

Methods

The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells.

Results

Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation.

Conclusions

Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity.  相似文献   
7.
8.
The PC (primary cilium) is present on most cell types in both developing and adult tissues in vertebrates. Despite multiple reports in the 1960s, the PC was almost forgotten for decades by most of the cell biology community, mainly because its function appeared enigmatic. This situation changed 10 years ago with the key discovery that this fascinating structure is the missing link between complex genetic diseases and key signalling pathways during development and tissue homoeostasis. A similar misfortune might have happened to an original membrane domain found at the base of PC in most cell types and recently termed the ‘ciliary pocket’. A morphologically related structure has also been described at the connecting cilium of photoreceptors and at the flagellum in spermatids. Its organization is also reminiscent of the flagellar pocket, a plasma membrane invagination specialized in uptake and secretion encountered in kinetoplastid protozoa. The exact function of the ciliary pocket remains to be established, but the recent observation of endocytic activity coupled to the fact that vesicular trafficking plays important roles during ciliogenesis brought excitement in the ciliary community. Here, we have tried to decipher what this highly conserved membrane domain could tell us about the function and/or biogenesis of the associated cilium.  相似文献   
9.

Background

The primary cilium is a sensory organelle generated from the centrosome in quiescent cells and found at the surface of most cell types, from where it controls important physiological processes. Specific sets of membrane proteins involved in sensing the extracellular milieu are concentrated within cilia, including G protein coupled receptors (GPCRs). Most GPCRs are regulated by β-arrestins, βarr1 and βarr2, which control both their signalling and endocytosis, suggesting that βarrs may also function at primary cilium.

Methodology/Principal Findings

In cycling cells, βarr2 was observed at the centrosome, at the proximal region of the centrioles, in a microtubule independent manner. However, βarr2 did not appear to be involved in classical centrosome-associated functions. In quiescent cells, both in vitro and in vivo, βarr2 was found at the basal body and axoneme of primary cilia. Interestingly, βarr2 was found to interact and colocalize with 14-3-3 proteins and Kif3A, two proteins known to be involved in ciliogenesis and intraciliary transport. In addition, as suggested for other centrosome or cilia-associated proteins, βarrs appear to control cell cycle progression. Indeed, cells lacking βarr2 were unable to properly respond to serum starvation and formed less primary cilia in these conditions.

Conclusions/Significance

Our results show that βarr2 is localized to the centrosome in cycling cells and to the primary cilium in quiescent cells, a feature shared with other proteins known to be involved in ciliogenesis or primary cilium function. Within cilia, βarr2 may participate in the signaling of cilia-associated GPCRs and, therefore, in the sensory functions of this cell “antenna”.  相似文献   
10.
Young leaves of the potato Solanum tuberosum L. cultivar Kardal contain resistance factors to the green peach aphid Myzuspersicae (Sulzer) (Hemiptera: Aphididae) and normal probing behavior is impeded. However, M. persicae can survive and reproduce on mature and senescent leaves of the cv. Kardal plant without problems. We compared the settling ofM. persicae on young and old leaves and analyzed the impact of aphids settling on the plant in terms of gene expression. Settling, as measured by aphid numbers staying on young or old leaves, showed that after 21 h significantly fewer aphids were found on the young leaves. At earlier time points there were no difference between young and old leaves, suggesting that the young leaf resistance factors are not located at the surface level but deeper in the tissue. Gene expression was measured in plants at 96 h postinfestation, which is at a late stage in the interaction and in compatible interactions this is long enough for host plant acceptance to occur. In old leaves of cv. Kardal (compatible interaction), M. persicae infestation elicited a higher number of differentially regulated genes than in young leaves. The plant response to aphid infestation included a larger number of genes induced than repressed, and the proportion of induced versus repressed genes was larger in young than in old leaves. Several genes changing expression seem to be involved in changing the metabolic state of the leaf from source to sink.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号