首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   13篇
  174篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   10篇
  2012年   19篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   10篇
  2007年   4篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   17篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
Aging is associated with a loss of metabolic homeostasis, with cofactors such as nicotinamide adenine dinucleotide (NAD+) declining over time. The decrease in NAD+ production has been linked to the age‐related loss of circulating extracellular nicotinamide phosphoribosyltransferase (eNAMPT), the rate‐limiting enzyme in the NAD+ biosynthetic pathway. eNAMPT is found almost exclusively in extracellular vesicles (EVs), providing a mechanism for the distribution of the enzyme in different tissues. Currently, the physiological cause for the release of eNAMPT is unknown, and how it may be affected by age and physical exercise. Here, we show that release of small EVs into the bloodstream is stimulated following moderate intensity exercise in humans. Exercise also increased the eNAMPT content in EVs, most prominently in young individuals with higher aerobic fitness. Both mature fit and young unfit individuals exhibited a limited increase in EV‐eNAMPT release following exercise, indicating that this mechanism is related to both the age and physical fitness of a person. Notably, unfit mature individuals were unable to increase the release of eNAMPT in EVs after exercise, suggesting that lower fitness levels and aging attenuate this important signalling mechanism in the body. EVs isolated from exercising humans containing eNAMPT were able to alter the abundance of NAD+ and SIRT1 activity in recipient cells compared to pre‐exercise EVs, indicating a pathway for inter‐tissue signalling promoted through exercise. Our results suggest a mechanism to limit age‐related NAD+ decline, through the systemic delivery of eNAMPT via EVs released during exercise.  相似文献   
2.
Myosin-V is a processive two-headed actin-based motor protein involved in many intracellular transport processes. A key question for understanding myosin-V function and the communication between its two heads is its behavior under load. Since in vivo myosin-V colocalizes with other much stronger motors like kinesins, its behavior under superstall forces is especially relevant. We used optical tweezers with a long-range force feedback to study myosin-V motion under controlled external forward and backward loads over its full run length. We find the mean step size remains constant at approximately 36 nm over a wide range of forces from 5 pN forward to 1.5 pN backward load. We also find two force-dependent transitions in the chemomechanical cycle. The slower ADP-release is rate limiting at low loads and depends only weakly on force. The faster rate depends more strongly on force. The stronger force dependence suggests this rate represents the diffusive search of the leading head for its binding site. In contrast to kinesin motors, myosin-V's run length is essentially independent of force between 5 pN of forward to 1.5 pN of backward load. At superstall forces of 5 pN, we observe continuous backward stepping of myosin-V, indicating that a force-driven reversal of the power stroke is possible.  相似文献   
3.
A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.  相似文献   
4.
Liver cells isolated from pre‐clinical models are essential tools for studying liver (patho)physiology, and also for screening new therapeutic options. We aimed at developing a new antibody‐free isolation method able to obtain the four main hepatic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macrophages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution centrifugations while non‐parenchymal cells were subjected to differential centrifugation. Two different fractions were obtained: HSC and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by selective adherence time to collagen‐coated substrates. Isolated cells showed high viability (80%‐95%) and purity (>95%) and were characterized as functional: hepatocytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo fenestrae distribution, HMΦ increased expression of inflammatory markers in response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol allows the simultaneous isolation of highly pure and functional hepatic cell sub‐populations from control or cirrhotic single livers without antibody selection.  相似文献   
5.
6.
Swamp eels of the genera Synbranchus and Ophisternon are secondary freshwater fishes whose biogeography provides evidence of their long residence in Mesoamerica, while their impoverished species-level taxonomy might suggest a more recent diversification or a conservative morphology. We have inferred the phylogenetic relationships of Synbranchus marmoratus and Ophisternon aenigmaticum from 45 drainages throughout South, Central America, and Cuba based on mitochondrial genes (cytochrome b and ATPase 8/6). Phylogeographic analysis supported the monophyly of Mesoamerican O. aenigmaticum although our results suggest that S. marmoratus is not a monophyletic group. We found a evolutionary differentiated Synbranchus mtDNA lineage inhabiting Las Perlas islands (Pacific Panama) that appeared to be taxonomically distinct and separated for a long period of time from the main Synbranchus clade. Major synbranchid clades were also corroborated with the nuclear RAG-1 gene (1171-bp). Application of two fish-based mtDNA clocks (1.05-1.3% pairwise divergence/million year (Ma)), is in accordance with the Gondwanian origin suggested for the Synbranchidae. The mtDNA lineages exhibited a remarkable geographic structure in Central America suggesting that vicariance has most likely promoted the Synbranchus and Ophisternon mtDNA diversification. Although our data indicate the importance of the Pacific area in Synbranchus differentiation, the mtDNA divergence between South and Central American Synbranchus is too small to support Cretaceous colonization via the proto-Antillean bridge suggested by Rosen [Syst. Zool. 24 (1976) 431]. Instead, our phylogeographic results suggest that Ophisternon and Synbranchus mtDNA clades most likely colonized Central America during the Miocene (12.7-23Ma) prior the final closure of the Isthmus of Panama (3.3Ma).  相似文献   
7.
Abstract

This work investigated chloroform extracts from culture supernatants of two human probiotic bacteria, Lactobacillus casei CRL 431 and Lactobacillus acidophilus CRL 730 for the production of virulence factors and quorum sensing (QS) interference against three Pseudomonas aeruginosa strains. Both extracts inhibited biofilm biomass (up to 50%), biofilm metabolic activity (up to 39%), the production of the enzyme elastase (up to 63%) and pyocyanin (up to 77%), and decreased QS, without presenting any antibacterial acgivity. In addition, the chloroform extracts of both strains disrupted preformed biofilms of the three strains of P. aeruginosa analyzed (up to 40%). GC-MS analysis revealed that the major compounds detected in the bioactive extracts were four diketopiperazines. This study suggests that the metabolites of L. casei and L. acidophilus could be a promising alternative to combat the pathogenicity of P. aeruginosa.  相似文献   
8.
With the changing climate, plants will be facing increasingly harsh environmental conditions marked by elevated salinity in the soils and elevated concentrations of CO2 in the atmosphere. These two factors have opposite effects on water status in plants. Therefore, our objective was to determine the interaction between these two factors and to determine whether elevated [CO2] might alleviate the adverse effects of salt stress on water status in two barley cultivars, Alpha and Iranis, by studying their relative water content and their water potential and its components, transpiration rate, hydraulic conductance, and water use efficiency. Both cultivars maintained their water status under salt stress, increasing water use efficiency and conserving a high relative water content by (1) reducing water potential via passive dehydration and active osmotic adjustment and (2) decreasing transpiration through stomatal closure and reducing hydraulic conductance. Iranis showed a greater capacity to achieve osmotic adjustment than Alpha. Under the combined conditions of salt-stress and elevated [CO2], both cultivars (1) achieved osmotic adjustment to a greater extent than at ambient [CO2], likely due to elevated rates of photosynthesis, and (2) decreased passive dehydration by stomatal closure, thereby maintaining a greater turgor potential, relative water content, and water use efficiency. Therefore, we found an interaction between salt stress and elevated [CO2] with regard to water status in plants and found that elevated [CO2] is associated with improved water status of salt-stressed barley plants.  相似文献   
9.
Molecular recognition begins when two molecules approach and establish interactions of certain strength. The mechanisms of molecular recognition reactions between biological molecules are not well known, and few systems have been analyzed in detail. We investigate here the reaction between an apoprotein and its physiological cofactor (apoflavodoxin and flavin mononucleotide) that binds reversibly to form a non-covalent complex (flavodoxin) involved in electron transfer reactions. We have analyzed the fast binding reactions between the FMN cofactor (and shorter analogs) and wild type (and nine mutant apoflavodoxins where residues interacting with FMN in the final complex have been replaced). The x-ray structures of two such mutants are reported that show the mutations are well tolerated by the protein. From the calculated microscopic binding rate constants we have performed a Phi analysis of the transition state of complex formation that indicates that the binding starts by interaction of the isoalloxazine-fused rings in FMN with residues of its hydrophobic binding site. In contrast, the phosphate in FMN, known to contribute most to the affinity of the final holoflavodoxin complex, is not bound in the transition state complex. Both the effects of ionic strength and of phosphate concentration on the wild type complex rate constant agree with this scenario. As suggested previously by nmr data, it seems that the isoalloxazine-binding site may be substantially open in solution. Interestingly, although FMN is a charged molecule, electrostatic interactions seem not to play a role in directing the binding, unlike what has been reported for other biological complexes. The binding can thus be best described as a hydrophobic encounter at an open binding site.  相似文献   
10.
HLA-B*2704 is strongly associated with ankylosing spondylitis. B*2706, which differs from B*2704 by two amino acid changes, is not associated with this disease. A systematic comparison of the B*2704- and B*2706-bound peptide repertoires was carried out to elucidate their overlap and differential features and to correlate them with disease susceptibility. Both subtypes shared about 90% of their peptide repertoires, consisting of peptides with Arg(2) and C-terminal aliphatic or Phe residues. B*2706 polymorphism influenced specificity at three anchor positions: it favored basic residues at P3 and POmega-2 and impaired binding of Tyr and Arg at POmega. Thus, the main structural feature of peptides differentially bound to B*2704 was the presence of C-terminal Tyr or Arg, together with a strong preference for aliphatic/aromatic P3 residues. This is the only known feature of B*2704 and B*2706 that correlates to their differential association with spondyloarthropathy. The concomitant presence of basic P3 and POmega-2 residues was observed only among peptides differentially bound to B*2706, suggesting that it impairs binding to B*2704. Similarity between peptide overlap and the degree of cross-reaction with alloreactive T lymphocytes suggested that the majority of shared ligands maintain unaltered antigenic features in the context of both subtypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号