首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
Nitrogen-limited and nitrogen-sufficient cell cultures of Selenastrum minutum (Naeg.) Collins (Chlorophyta) were used to investigate the dependence of NH4+ assimilation on exogenous CO2. N-sufficient cells were only able to assimilate NH4+ maximally in the presence of CO2 and light. Inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron also inhibited NH4+ assimilation. These results indicate that NH4+ assimilation by N-sufficient cells exhibited a strict requirement for photosynthetic CO2 fixation. N-limited cells assimilated NH4+ both in the dark and in the light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, diuron, indicating that photosynthetic CO2 fixation was not required for NH4+ assimilation. Using CO2 removal techniques reported previously in the literature, we were unable to demonstrate CO2-dependent NH4+ assimilation in N-limited cells. However, employing more stringent CO2 removal techniques we were able to show a CO2 dependence of NH4+ assimilation in both the light and dark, which was independent of photosynthesis. The results indicate two independent CO2 requirements for NH4+ assimilation. The first is as a substrate for photosynthetic CO2 fixation, whereas the second is a nonphoto-synthetic requirement, presumably as a substrate for the anaplerotic reaction catalyzed by phosphoenolpyruvate carboxylase.  相似文献   
2.
The site-specific phosphorylation of bovine histone H1 by protein kinase C was investigated in order to further elucidate the substrate specificity of protein kinase C. Protein kinase C was found to phosphorylate histone H1 to 1 mol per mol. Using N-bromosuccinimide and thrombin digestions, the phosphorylation site was localized to the globular region of the protein, containing residues 71-122. A tryptic peptide containing the phosphorylation site was purified. Modification of the phosphoserine followed by amino acid sequence analysis demonstrated that protein kinase C phosphorylated histone H1 on serine 103. This sequence, Gly97-Thr-Gly-Ala-Ser-Gly-Ser(PO4)-Phe-Lys105, supports the contention that basic amino acid residues C-terminal to the phosphorylation site are sufficient determinants for phosphorylation by protein kinase C.  相似文献   
3.
The predominant form of phosphorylase phosphatase activity in porcine renal cortical extracts was a polycation-stimulated protein phosphatase. This activity was present in extracts in a high-molecular-weight form which could be converted to a free catalytic subunit by treatment with ethanol, urea, or freezing and thawing in the presence of beta-mercaptoethanol. The catalytic subunit of the polycation-stimulated phosphatase was purified by chromatography on DEAE-Sephacel, heparin-Sepharose, and Sephadex G-75. The phosphatase appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis. The enzyme had an apparent Mr of 35 000 on gel filtration and SDS-polyacrylamide gel electrophoresis. The purified phosphatase could be stimulated by histone H1, protamine, poly(D-lysine), poly(L-lysine) or polybrene utilizing phosphorylase a as the substrate. It preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. The phosphatase was highly sensitive to inhibition by ATP. These results suggest that the renal polycation-stimulated phosphatase catalytic subunit is very similar to or identical with the skeletal muscle phosphatase form which has been previously designated phosphatase-2Ac.  相似文献   
4.
A major rabbit skeletal muscle phosphorylase phosphatase activity which is markedly stimulated by histone H1 has been resolved from inhibitor-sensitive phosphorylase phosphatase (type-1 phosphatase), glycogen synthase kinase 3-activated phosphatase, phosphatase heat-stable inhibitor proteins, and alkaline phosphatase activity by various purification techniques. Evidence is presented that this phosphatase is a high-molecular weight form of a type-2 phosphatase. Our data suggest that this phosphatase may be regulated by histone H1, protamine or analogous polycationic compounds.  相似文献   
5.
Recently, it has been observed that the infection of human target cells with certain measles virus (MV) strains leads to the downregulation of the major MV receptor CD46. Here we report that CD46 downregulation can be rapidly induced in uninfected cells after surface contact with MV particles or MV-infected cells. Receptor modulation is detectable after 30 min of cocultivation of uninfected cells with MV-infected cells and is complete after 2 to 4 h, a time after which newly synthesized MV hemagglutinin (MV-H) cannot be detected in freshly infected target cells. This contact-mediated receptor modulation is also induced by recombinant MV-H expressed by vaccinia virus and is inhibitable with antibodies against CD46 and MV-H. By titrating the effect with MV Edmonston strain-infected cells, a significant contact-mediated CD46 modulation was detectable up to a ratio of 1 infected to 64 uninfected cells. As a result of CD46 downregulation, an increased susceptibility of uninfected cells for complement-mediated lysis was observed. This phenomenon, however, is MV strain dependent, as observed for the downregulation of CD46 after MV infection. These data suggest that in acute measles or following measles vaccination, uninfected cells might also be destroyed by complement after contacting an MV-infected cell.  相似文献   
6.
Similarly to higher plant root systems, Chlamydomonas reinhardtii Dangeard (UTEX 90) cells exhibited biphasic NO3? uptake kinetics. The uptake pattern was similar in cells cultured in 10 mM NO3? (NO3?-grown), 0.25 mM NO3? (N-limited) or 10 mM NO3? followed by an 18-h period of N-deprivation (N-starved). In all cell types there was an apparent phase transition in uptake at 1.1 mM NO3?, although there were variations in the uptake Vmax of both isotherms. The rate of uptake via isotherm 0 ([NO3?]<1.1 mM) in N-limited cells was higher than that of either NO3?-grown or N-starved cells. In contrast, NO3?-grown and N-limited cells exhibited comparable Vmax values when supplied with 1.1 to 1.8 mM NO3? (isotherm 1). When supplied with 1.6 mM NO3?, both N-limited and N-starved cells exhibited enhanced linear uptake after 60 min of incubation. We ascribed this to an induction phenomenon. This trend was not observed when NO3?-grown cells were supplied with 1.6 mM NO3?, or when N-limited and N-starved cells were supplied with 0.6 mM NO3?. The ‘inducible’ aspect of uptake by N-limited cells was blocked by cycloheximide (10 mg l?1), but not by actinomycin D (5 mg l?1), thus indicating the involvement of a translational or post-translational event. To investigate this phenomenon further, we analysed the cell proteins of N-limited cells supplied with either 0.6 or 1.6 mM NO3? for 90 min, using two-dimensional gel electrophoresis. Comparison of protein profiles enabled the identification of a single cell membrane-associated polypeptide (21 kDa, pI ca 5.5) and ten soluble fraction polypeptides (17–73 kDa, pI ca 5.0 to 7.1) unique to the high NO3? treatment. We propose that the ‘inducible’ portion of NO3? uptake may provide the means by which C. reinhardtii cells regulate uptake in accordance with assimilatory capacity.  相似文献   
7.
Extracts of rat tissues contain kinases which catalyze the conversion of glycogen synthease from the glucose 6-phosphate-independent (I) form to the glucose 6-phosphatate-dependent (D) form. These kinases were stimulated by adenosine 3':5' monophosphate (cyclic AMP). The glycogen synthase kinase activity ratio (activity in the absence of cyclic AMP divided by activity in the presence of cyclic AMP) varied from 0.28 to 0.97. The activity ratio for histone kinase in the same extracts ranged from 0.11 to 0.29. The levels of glycogen synthase kinase varied by a factor of 80 in the following rat tissues (given in order of decreasing enzyme activity): kidney, liver, stomach mucosa, lung, brain, heart, skeletal muscle, and adipose tissue. In the same tissues the levels of histone kinase varied by only a factor of 6 and did not correlate with the levels of glycogen synthase kinase. A modification of the method of Walsh et al. ((1971) J. Biol. Chem. 246, 1977-1985) was developed for purification of the heat-stable inhibitor of cyclic AMP-dependent protein kinases (inhibitor). The modified procedure resulted in good yields of highly purified inhibitor and was much simpler than the previously described procedure. This inhibitor completely inhibited cyclic AMP-dependent histone kinase activity of the extracts but much of the glycogen synthase kinase activity was not inhibited. The portion of glycogen synthase kinase that was insensitive to the inhibitor was: stomach mucosa, 95%; brain, 90%; liver, 82%; kidney, 81%; lung, 68%; adipose tissue, 65%; skeletal muscle, 63%; and heart, 54%. This histone kinase activity in the extracts and hte ratio of glycogen synthase kinase to histone kinase activity of purified catalytic subunit of the cyclic AMP-dependent protein kinase was used to calculate for each extract the glycogen synthase kinase activity contributed by the cyclic AMP-dependent protein kinase. Based on these calculations, the portion of the glycogen synthase kinase which was due to kinases independent of cyclic AMP was: kidney, 97%; liver, 91%; lung, 89%; brain, 87%, heart, 85%; stomach mucosa, 84%; adipose tissue, 38%; and skeletal muscle, 33%. A significant portion of the glycogen synthase kinase activity, but virtually none of the cyclic AMP-dependent histone kinase activity, of these extracts could be adsorbed to phosphocellulose columns. Liver extracts contained, in addition, a form of glycogen synthase kinase which was not adsorbed to phosphocellulose and which could be separated from the cyclic AMP-dependent protein kinase by additional chromatography. These studies demonstrate that kinases independent of cyclic AMP account for most of the glycogen synthase kinase activity of many tissues. The widespread distribution and high concentrations of these enzymes suggest that they are of physiological importance.  相似文献   
8.
The glc7 mutant of the yeast Saccharomyces cerevisiae does not accumulate glycogen due to a defect in glycogen synthase activation (Peng, Z., Trumbly, R. J., and Reimann, E.M. (1990) J. Biol. Chem. 265, 13871-13877) whereas wild-type strains accumulate glycogen as the cell cultures approach stationary phase. We isolated the GLC7 gene by complementation of the defect in glycogen accumulation and found that the GLC7 gene is the same as the DIS2S1 gene (Ohkura, H., Kinoshita, N., Miyatani, S., Toda, T., and Yanagida, M. (1989) Cell 57, 997-1007). The protein product predicted by the GLC7 DNA sequence has a sequence that is 81% identical with rabbit protein phosphatase 1 catalytic subunit. Protein phosphatase 1 activity was greatly diminished in extracts from glc7 mutant cells. Two forms of protein phosphatase 1 were identified after chromatography of extracts on DEAE-cellulose. Both forms were diminished in the glc7 mutant and were partly restored by transformation with a plasmid carrying the GLC7 gene. Southern blots indicate the presence of a single copy of GLC7 in S. cerevisiae, and gene disruption experiments showed that the GLC7 gene is essential for cell viability. The GLC7 mRNA was identified as a 1.4-kilobase RNA that increases 4-fold at the end of exponential growth in wild-type cells, suggesting that activation of glycogen synthase is mediated by increased expression of protein phosphatase 1 as cells reach stationary phase.  相似文献   
9.
In the adult male, the testes produce both sperm and testosterone. The function of the testicles is directed by the central nervous system and pituitary gland. Precise regulation of testicular function is conferred by an elegant feedback loop in which the secretion of pituitary gonadotropins is stimulated by gonadotropin hormone-releasing hormone (GnRH) from the hypothalamus and modulated by testicular hormones. Testosterone and its metabolites estradiol and dihydrotestosterone (DHT) as well as inhibin B inhibit the secretion of the gonadotropins both directly at the pituitary and centrally at the level of the hypothalamus. In the testes, LH stimulates testosterone synthesis and FSH promotes spermatogenesis, but the exact details of gonadotropin action are incompletely understood. A primary goal of research into understanding the hormonal regulation of testicular function is the development of reversible, safe and effective male hormonal contraceptives. The administration of exogenous testosterone suppresses pituitary gonadotropins and hence spermatogenesis in most, but not all, men. The addition of a second agent such as a progestin or a GnRH antagonist yields more complete gonadotropin suppression; such combination regimens effectively suppress spermatogenesis in almost all men and may soon bring the promise of hormonal male contraception to fruition.  相似文献   
10.
Human plasmacytoid dendritic cells (PDC) are key sentinels alerting both innate and adaptive immune responses through production of huge amounts of alpha/beta interferon (IFN). IFN induction in PDC is triggered by outside-in signal transduction pathways through Toll-like receptor 7 (TLR7) and TLR9 as well as by recognition of cytosolic virus-specific patterns. TLR7 and TLR9 ligands include single-stranded RNA and CpG-rich DNA, respectively, as well as synthetic derivatives thereof which are being evaluated as therapeutic immune modulators promoting Th1 immune responses. Here, we identify the first viruses able to block IFN production by PDC. Both TLR-dependent and -independent IFN responses are abolished in human PDC infected with clinical isolates of respiratory syncytial virus (RSV), RSV strain A2, and measles virus Schwarz, in contrast to RSV strain Long, which we previously identified as a potent IFN inducer in human PDC (Hornung et al., J. Immunol. 173:5935-5943, 2004). Notably, IFN synthesis of PDC activated by the TLR7 and TLR9 agonists resiquimod (R848) and CpG oligodeoxynucleotide 2216 is switched off by subsequent infection by RSV A2 and measles virus. The capacity of RSV and measles virus of human PDC to shut down IFN production should contribute to the characteristic features of these viruses, such as Th2-biased immune pathology, immune suppression, and superinfection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号