首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   15篇
  2024年   1篇
  2023年   4篇
  2022年   12篇
  2021年   16篇
  2020年   9篇
  2019年   15篇
  2018年   7篇
  2017年   8篇
  2016年   10篇
  2015年   18篇
  2014年   13篇
  2013年   15篇
  2012年   19篇
  2011年   12篇
  2010年   7篇
  2009年   11篇
  2008年   6篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1970年   1篇
排序方式: 共有237条查询结果,搜索用时 31 毫秒
1.
Repeated ischemic insults at one hour intervals result in more severe neuronal damage than a single similar duration insult. The mechanism for the more severe damage with repetitive ischemia is not fully understood. We hypothesized that the prolonged reperfusion periods between the relatively short ischemic insults may result in a pronounced generation of oxygen free radicals (OFRs). In this study, we tested the protective effects of superoxide dismutase (SOD) and catalase (alone or in combination), and U78517F in a gerbil model of repetitive ischemia. Three episodes (two min each) of bilateral carotid occlusion were used at one hour intervals to produce repetitive ischemia. Superoxide dismutase and catalase were infused via osmotic pumps into the lateral ventricles. Two doses of U78517F were given three times per animal, one half hour prior to each occlusion. Neuronal damage was assessed 7 days later in several brain regions using the silver staining technique. The Mann-Whitney U test was used for statistical comparison. Superoxide dismutase showed significant protection in the hippocampus (CA4), striatum, thalamus and the medial geniculate nucleus (MGN). Catalase showed significant protection in the striatum, hippocampus, thalamus, and MGN and the substantia nigra reticulata. Combination of the two resulted in additional protection in the cerebral cortex. Compared to the controls, there was little protection with a dose of 3 mg/kg of U78517F. There was significant protection with a dose of 10 mg/kg in the hippocampus (CA4), striatum, thalamus, medial geniculate nucleus and the substantia nigra reticulata. The significant protection noted with SOD, catalase or U78517F with repeated ischemia supports, the hypothesis that OFRs may play a role in neuronal damage in repeated cerebral ischemia.  相似文献   
2.
The release of the neurotransmitter, glutamate, and the activation of receptor operated calcium channels, may increase the degree of damage in ischemic brain tissue. Inhibition of excitatory neurotransmitters should therefore result in cytoprotection of ischemic brain tissue. In this study we evaluated the effect of baclofen, an inhibitor of presynaptic glutamate release, on ischemic gerbil cortex, hippocampus (CA 1 and CA4), striatum and thalamus. Histological evaluation was done in a blind manner in 4 groups (total 36 animals): a control group (9 animals) and three groups (27 animals) with varying doses of baclofen. For cerebral ischemia, we used single episode of five minutes of arterial occlusion of the carotid arteries. Baclofen in doses of 0, 25, 50, and 100 mg/kg were given to different groups five minutes prior to ischemic insult. This was followed by intraperitoneal injections given 24 and 48 hours after the initial insult. Statistically significant histological cytoprotection was demonstrated. Doses of 25 mg/kg appeared to demonstrate significant protection of the cortex (p=0.0002), the CA1 and CA4 regions of the hippocampus (p=0.0004 and 0.0001) respectively. At a dose of 50 mg/kg, significant cytoprotection was demonstrated at the hippocampus (CA1 and CA4 regions), in particular at the CA4 region (p=0.0029). The 100 mg/kg dose appeared to have most significant protection at the CA1 and CA4 regions of the hippocampus (both p=0.0001), striatum (p=0.0011), and the thalamus (p=0.0008). All statistical comparisons were done using non-parametric tests (Mann-Whitney U test). Our study demonstrates that baclofen is cytoprotective to ischemic neuronal cells, especially in the hippocampus. Clinically this may be beneficial to those patients with strokes or head injuries.  相似文献   
3.
GABAergic neurons in the striatum are very sensitive to the effects of ischemia. The progressive decline in striatal GABA following transient forebrain ischemia in gerbils may be secondary to either a decreased production or an increase in reuptake mechanisms or both. The current experiment was designed to evaluate release of GABA by stimulation with K+ or inhibition of its uptake with nipecotic acid or their combination (K+ nipecotic) after repetitive forebrain ischemia in gerbils by in-vivo microdialysis on Days 1, 3, 5, and 14 following the insult. Infusion of nipecotic acid or potassium chloride, resulted in a significant increase in extracellular GABA. This response was significantly decreased in the post-ischemic animals. The synergistic effect of increased GABA concentrations by the infusion of nipecotic acid+potassium chloride seen in the controls was not evident in the post-ischemic animals. In conclusion, though there is a reduction in the extracellular GABA concentrations in the first week following an ischemic insult, restorative mechanisms are operative in the second week as seen by the increasing GABA concentrations.  相似文献   
4.
Plasmonics - This paper investigates the behavior of the surface plasmon polaritons (SPPs) on dielectric-metal interface using Ag thin film on glass substrate. The Kretschman configuration, which...  相似文献   
5.
Cellular redox state is regulated by numerous components. The thiol-disulfide compound, glutathione, is considered to be one of the most significant, owing to its antioxidant power and potential influence over protein structure and function. While signaling roles for glutathione in plants have been suggested for several years, hard proof is scarce. Recently, through an approach based on genetic manipulation of glutathione in an oxidative stress background, we reported evidence that glutathione status is important to allow intracellular oxidation to activate pathogenesis-related phytohormone signaling pathways. This effect does not seem to be caused by changes in glutathione antioxidant capacity, and appears to be distinct to regulation through known players in pathogenesis responses, such as NPR1. Our data therefore suggest that new glutathione-dependent components that link oxidative stress to response outputs await discovery.  相似文献   
6.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   
7.
8.
Plasmonics - Effect of different gold (Au) grating structures on light absorption in solar cell is investigated by finite elemental analysis using COMSOL multiphysics-RF module. The geometry of the...  相似文献   
9.
The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations.  相似文献   
10.
Recent in silico analysis has revealed the presence of a group of proteins in pro and lower eukaryotes, but not in Man, that show extensive amino acid sequence similarity to known O(6)-alkylguanine-DNA alkyltransferases, but where the cysteine at the putative active site is replaced by another residue, usually tryptophan. Here we review recent work on these proteins, which we designate as alkyltransferase-like (ATL) proteins, and consider their mechanism of action and role in protecting the host organisms against the biological effects of O(6)-alkylating agents, and their evolution. ATL proteins from Escherichia coli (eAtl, transcribed from the ybaz open reading frame) and Schizosaccharomyces pombe (Atl1) are able to bind to a range of O(6)-alkylguanine residues in DNA and to reversibly inhibit the action of the human alkyltransferase (MGMT) upon these substrates. Isolated proteins were not able to remove the methyl group in O(6)-methylguanine-containing DNA or oligonucleotides, neither did they display glycosylase or endonuclease activity. S. pombe does not contain a functional alkyltransferase and atl1 inactivation sensitises this organism to a variety of alkylating agents, suggesting that Atl1 acts by binding to O(6)-alkylguanine lesions and signalling them for processing by other DNA repair pathways. Currently we cannot exclude the possibility that ATL proteins arose through independent mutation of the alkyltransferase gene in different organisms. However, analyses of the proteins from E. coli and S. pombe, are consistent with a common function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号