首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   10篇
  2014年   8篇
  2013年   12篇
  2012年   12篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
Cellular redox state is regulated by numerous components. The thiol-disulfide compound, glutathione, is considered to be one of the most significant, owing to its antioxidant power and potential influence over protein structure and function. While signaling roles for glutathione in plants have been suggested for several years, hard proof is scarce. Recently, through an approach based on genetic manipulation of glutathione in an oxidative stress background, we reported evidence that glutathione status is important to allow intracellular oxidation to activate pathogenesis-related phytohormone signaling pathways. This effect does not seem to be caused by changes in glutathione antioxidant capacity, and appears to be distinct to regulation through known players in pathogenesis responses, such as NPR1. Our data therefore suggest that new glutathione-dependent components that link oxidative stress to response outputs await discovery.  相似文献   
2.
In the present work, separate and combined effects of excessive potassium and magnesium deficiency on safflower (Carthamus tinctorius) were studied. Four treatments were considered: C (control treatment: complete medium containing 1.5 mM Mg), +KCl (excessive potassium treatment: complete medium added with 60 mM KCl), ?Mg (Mg-deficient treatment: containing 0.1 mM Mg), and DS (double stress treatment: Mg-deficient medium (0.1 mM Mg) added with 60 mM KCl. Excessive potassium effect on plant growth was more pronounced than that of Mg deficiency. The two stresses impaired differently plant organs; KCl application affected more roots than shoots, whereas Mg deficiency reduced only leaf biomass. Gas exchange and pigment concentrations and patterns were severely impaired by KCl and mainly by interactive effects of the two stresses. This led to obvious lipid peroxidation and electrolyte leakage. Mg deficiency did not induce lipid peroxidation and electrolyte leakage, but as applied with excessive potassium, it doubled the effect of the latter. Mineral analyses showed that major cation nutrition was disturbed by KCl and combined stresses and at a lower level by magnesium deficiency. Plants did not show an enhanced selectivity of Mg and Ca over K but they improved their use efficiencies.  相似文献   
3.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   
4.
5.
The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations.  相似文献   
6.
Recent in silico analysis has revealed the presence of a group of proteins in pro and lower eukaryotes, but not in Man, that show extensive amino acid sequence similarity to known O(6)-alkylguanine-DNA alkyltransferases, but where the cysteine at the putative active site is replaced by another residue, usually tryptophan. Here we review recent work on these proteins, which we designate as alkyltransferase-like (ATL) proteins, and consider their mechanism of action and role in protecting the host organisms against the biological effects of O(6)-alkylating agents, and their evolution. ATL proteins from Escherichia coli (eAtl, transcribed from the ybaz open reading frame) and Schizosaccharomyces pombe (Atl1) are able to bind to a range of O(6)-alkylguanine residues in DNA and to reversibly inhibit the action of the human alkyltransferase (MGMT) upon these substrates. Isolated proteins were not able to remove the methyl group in O(6)-methylguanine-containing DNA or oligonucleotides, neither did they display glycosylase or endonuclease activity. S. pombe does not contain a functional alkyltransferase and atl1 inactivation sensitises this organism to a variety of alkylating agents, suggesting that Atl1 acts by binding to O(6)-alkylguanine lesions and signalling them for processing by other DNA repair pathways. Currently we cannot exclude the possibility that ATL proteins arose through independent mutation of the alkyltransferase gene in different organisms. However, analyses of the proteins from E. coli and S. pombe, are consistent with a common function.  相似文献   
7.
Three genes encode catalase in Arabidopsis. Although the role of CAT2 in photorespiration is well established, the importance of the different catalases in other processes is less clear. Analysis of cat1, cat2, cat3, cat1 cat2, and cat2 cat3 T‐DNA mutants revealed that cat2 had the largest effect on activity in both roots and leaves. Root growth was inhibited in all cat2‐containing lines, but this inhibition was prevented by growing plants at high CO2, suggesting that it is mainly an indirect effect of stress at the leaf level. Analysis of double mutants suggested some overlap between CAT2 and CAT3 functions in leaves and CAT1 and CAT2 in seeds. When plants had been grown to a similar developmental stage in short days or long days, equal‐time exposure to oxidative stress caused by genetic or pharmacological inhibition of catalase produced a much stronger induction of H2O2 marker genes in short day plants. Together, our data (a) underline the importance of CAT2 in basal H2O2 processing in Arabidopsis; (b) suggest that CAT1 and CAT3 are mainly “backup” or stress‐specific enzymes; and (c) establish that day length‐dependent responses to catalase deficiency are independent of the duration of oxidative stress.  相似文献   
8.
Nanotechnology has become one of the several approaches attempting to ameliorate the severe effect of drought on plant''s production and to increase the plants tolerance against water deficit for the water economy. In this research, the effect of foliar application of TiO2, nanoparticles or ordinary TiO2, on Helianthus annuus subjected to different levels of water deficit was studied. Cell membrane injury increased by increasing the level of water deficit and TiO2 concentration, and both types of TiO2 affected the leaves in analogous manner. Ord-TiO2 increased H2O2 generation by 67–240% and lipid peroxidation by 4–67% in leaves. These increases were more than that induced by Nano-TiO2 and the effect was concentration dependent. Proline significantly increased in leaves by water deficit stress, reaching at 25% field capacity (FC) to more than fivefold compared to that in plants grown on full FC. Spraying plants with water significantly decreased the activities of enzymes in the water deficit stressed roots. The water deficit stress exerted the highest magnitude of effect on the changes of cell membrane injury, MDA, proline content, and activities of CAT and GPX. Nano-TiO2 was having the highest effect on contents of H2O2 and GPX activity. In roots, the level of water deficit causes highest effect on enzyme activities, but TiO2 influenced more on the changes of MDA and H2O2 contents. GPX activity increased by 283% in leaves of plants treated with 50 and 150 ppm Nano-TiO2, while increased by 170% in those treated with Ord-TiO2, but APX and CAT activities increased by 17–197%, in average, with Ord-TiO2. This study concluded that Nano-TiO2 didn’t ameliorate the effects of drought stress on H. annuus but additively increased the stress, so its use in nano-phytotechnology mustn’t be expanded without extensive studies.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-022-01153-z.  相似文献   
9.
Abderrazak, S. B., Oury, B, Lal, A. A., Bosseno, M.-F., Force-Barge, P., Dujardin, J.-P., Fandeur, T., Molez, J.-F., Kjellberg, F., Ayala, F. J., and Tibayrenc, M. 1999. Plasmodium falciparum: Population genetic analysis by multilocus enzyme electrophoresis and other molecular markers. Experimental Parasitology 92, 232-238. The population structure of Plasmodium falciparum, the agent of malignant malaria, is uncertain. We have analyzed multilocus enzyme electrophoresis (MLEE) polymorphisms at 7-12 gene loci in each of four populations (two populations in Burkina Faso, one in Sudan, one in Congo), plus one "cosmopolitan" sample consisting of parasite cultures from 15 distant localities in four different continents. We have also performed random amplified polymorphic DNA analysis (RAPD) and restriction fragment length polymorphism (RFLP) and characterized gene varia tion at four antigen genes in the Congo population. All genetic assays show abundant genetic variability in all populations analyzed. With the isoenzyme assays, strong linkage disequilibrium is apparent in at least two local populations, the Congo population and one population from Burkina Faso, as well as in the cosmopolitan sample, and less definitely in the other Burkina Faso population. However, no linkage disequilibrium is detected in the Congo population with the molecular assays. We failed to detect any nonrandom association between the different kinds of genetic markers; that is, MLEE with RAPD or RFLP, RAPD with RFLP, and so on. Although isoenzyme data show statistical departures from panmictic expectations, these results suggest that in the areas under survey, P. falciparum populations do not undergo predominant clonal evolution and show no clear-cut subdivisions, un like Trypanosoma cruzi, Leishmania sp., and other major parasitic species. We discuss the epidemiological and taxonomical significance of these results.  相似文献   
10.
We have developed a system for rapid and reliable assessment of gene essentiality in Haemophilus influenzae Rd strain KW20. We constructed two "suicide" complementation vectors (pASK5 and pASK6) containing 5' and 3' regions of the nonessential ompP1 gene flanking a multiple cloning site and a selectable marker (a chloramphenicol resistance gene or a tetracycline resistance cassette). Transformation of H. influenzae with the complementation constructs directs chromosomal integration of a gene of interest into the ompP1 locus, where the strong, constitutive ompP1 promoter drives its expression. This single-copy, chromosome-based complementation system is useful for confirming the essentiality of disrupted genes of interest. It allows genetic analysis in a background free of interference from any upstream or downstream genetic elements and enables conclusive assignment of essentiality. We validated this system by using the riboflavin synthase gene (ribC), a component of the riboflavin biosynthetic pathway. Our results confirmed the essentiality of ribC for survival of H. influenzae Rd strain KW20 and demonstrated that a complementing copy of ribC placed under control of the ompP1 promoter reverses the lethal phenotype of a strain with ribC deleted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号