首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
排序方式: 共有17条查询结果,搜索用时 49 毫秒
1.
The effect of Neotyphodium endophytes on growth parameters and zinc (Zn) tolerance and uptake was studied in two grass species of Festuca arundinacea and Lolium perenne. Plants were grown under different Zn concentrations (control, 200, 400, 800, and 1800 mg kg?1) in potted soil for 5 months. The results showed that the number of plant tillers was 85 and 51% greater in endophyte infected Festuca (FaEI) and Lolium (LpEI), respectively, compared to their endophyte free (EF) plants. Roots and shoots dry weights in infected Festuca were 87 and 9% greater than non-infected counterparts but in opposite, EF Lolium had 47 and 8% greater root and shoot dry weights than LpEI. Endophyte infected Festuca and Lolium improved chlorophyll fluorescence as Fv/Fm at high concentrations of Zn, showing their better chlorophyll functions and significant reduction of Zn stress in endophyte infected plants. Shoots of endophyte infectedFestuca had 82% greater concentration of Zn than EF Festuca when grown in soil containing 1800 mg kg?1 Zn. Festuca and Lolium may tolerate high Zn concentration in soil without reduction in shoot and root growth. Endophyte infection in Festuca may help the grass accumulate and transport more Zn in aboveground parts under Zn-stress, thereby aiding phytoremediation of contaminated soils.  相似文献   
2.
Nickel (Ni) is an irreplaceable component of urease which reduces urea toxicity, but excess of Ni has detrimental effects on plant growth. The responses of cucumber (Cucumis sativus L. cvs. Negin and Dominus) plants supplied with urea as sole N source to four Ni concentrations (0, 50, 100 and 200 μM) were investigated. Nickel at a 50 μM concentration stimulated growth and reduced urea accumulation and lipid peroxidation in the leaves. However, the application of 100 and 200 μM Ni reduced a shoot dry mass and increased a malondialdehyde (MDA) content. An activity of catalase (CAT) was not affected by 50 μM Ni, whereas it was significantly increased by 200 μM Ni. The application of Ni resulted in an enhancement of a guaiacol peroxidase (GPX) activity in the leaves. An ascorbate peroxidase (APX) activity was reduced by 200 μM Ni in cv. Negin and by 100 μM Ni in cv. Dominus.  相似文献   
3.
Fluoride is a potentially toxic element, with a narrow range of tolerable amounts taken up via food or drinking water. To evaluate F content in surface soils, 255 topsoil samples (0–20 cm) in an area of 6800 km2 in Isfahan province of central Iran were collected. Crop plants and randomly sampled water samples from wells were evaluated during the spring and summer seasons. Total F concentration in 96% of soil samples was lower than the global suggested average of 200 mg kg?1. The mean F concentration of water samples in the study area was 0.05 and 0.3 mg L?1 in summer and spring, respectively. Fluoride concentrations in different plant species were in the range of normal values. The total hazard quotient (HQ) for both population groups via consumption of cereals, vegetables, and water; incidental ingestion of soil; inhalation of soil particulates; and dermal contact with water and soil was less than 1.0, resembling no obvious risk. It is suggested that neither age group in Isfahan province will experience a significant potential health risk through their dietary intake of cereals, vegetables, and water; ingestion of soil; inhalation of particulates; and dermal contact.  相似文献   
4.
Supplying a sufficient amount of available iron (Fe) for plant growth in hydroponic nutrient solutions is a great challenge. The chelators commonly used to supply Fe in nutrient solutions have several disadvantages and may negatively affect plant growth. In this research study we have synthesized certain Fe-amino acid chelates, including Fe-arginine [Fe(Arg)2], Fe-glycine [Fe(Gly)2], and Fe-histidine [Fe(His)2], and evaluated their efficacy as an Fe source for two tomato cultivars (Lycopersicon esculentum Mill. cvs. ‘Rani’ and ‘Sarika’) grown in nutrient solution. Application of Fe-amino acid chelates significantly increased root and shoot dry matter yield of both tomato cultivars compared with Fe-EDTA. Tomato plants supplied with Fe-amino acid chelates also accumulated significantly higher levels of Fe, Zn, and N in their roots and shoots compared with those supplied with Fe-EDTA. In ‘Sarika’, the effect of Fe-amino acid chelates on shoot Fe content was in the order Fe(His)2?>?Fe(Gly)2?>?Fe(Arg)2. In ‘Rani’, the addition of all synthesized Fe-amino acid chelates significantly increased activity of ascorbate peroxidase (APX) in comparison with Fe-EDTA, whereas in ‘Sarika’, only Fe(His)2 increased shoot APX activity. The results obtained indicated that using Fe-amino acid chelates in the nutrient solution could supply a sufficient amount of Fe for plant uptake and also improve root and shoot growth of tomato plants, although this increase was cultivar-dependent. According to the results, Fe-amino acid chelates can be used as an alternative for Fe-EDTA to supply Fe in nutrient solutions.  相似文献   
5.
Zinc is a critical mineral nutrient that protects plant cells from salt-induced cell damage. We tested whether the application of Zn at various concentrations [0, 5, 10, or 20 mg kg?1(soil)] would protect almond (Prunus amygdalus) seedlings subjected to salt stress (0, 30, 60, or 90 mM NaCl). All concentrations of Zn, particularly the application of 10 and 20 mg kg?1, increased the net photosynthetic rate, stomatal conductance, the maximal efficiency of PSII photochemistry, and a proline content in almond seedlings grown under salt stress; 20 mg(Zn) kg?1 was the most effective concentration. The activity of superoxide dismutase showed a significant increase under salinity stress and Zn application. The catalase activity decreased in the salt-treated seedlings, but recovered after the Zn treatment. Our results proved the positive effects of Zn on antioxidant enzyme activity scavenging the reactive oxygen species produced under salt stress.  相似文献   
6.

Background and Aims

We tested the utility of some biological treatments to hasten degradation of waste tire rubber in soil and thus the release of zinc and sulfur for plant uptake.

Methods

Three rates of ground tire rubber (0, 150, and 300?mg?kg?1) were incorporated into a Zn-deficient calcareous soil. Before addition to the soil, ground rubber was given four microbial treatments including no inoculation, inoculation with Rhodococcus erythropolis, inoculation with R. erythropolis+Escherichia coli, and inoculation with R. erythropolis+E. coli+Acinobacter calcoaceticus. In the pot experiment, corn (Zea mays L. Hybrid Single Cross 500) and sunflower (Helianthus annuus L. cv. Record) plants were exposed to three rates of ground rubber (0, 150, and 300?mg?kg?1) or 3?mg zinc kg?1 as ZnSO4. Before addition to the soil, ground rubber and ZnSO4 were inoculated or non-inoculated with R. erythropolis+E. coli+A. calcoaceticus.

Results

Ground rubber and microbial inoculation treatments reduced soil pH and the magnitude of this reduction increased over time. Ground rubber in combination with microbial inoculation increased DTPA-extractable soil Zn and Fe. The amount of DTPA-extractable Zn and Fe of rubber-amended soils increased over time so that the highest concentration of available Zn and Fe was found at week 10. Application of microbial inoculated ground tire rubber significantly increased shoot Zn concentration of each plant species.

Conclusions

Bacterial inoculation of ground rubber was effective in hastening increase in DTPA-extractable Zn in the studied calcareous soil and in enhancing Zn uptake by plants.  相似文献   
7.
Food, drinking water, soil, and air are the main routes of exposure to trace metals, thus the assessment of the risks posed to humans by these elements is important. Wheat, potatoes, and maize are very important parts of the Iranian diet. The objectives of this study were to estimate the non-carcinogenic and carcinogenic health risks of Hg, Pb, Cd, Cr, Se, As, and Ni to adults and children via soil, water, and major food crops consumed in Hamedan Province, northwest Iran, using the total non-cancer hazard quotient (THQ) and cancer risk assessment estimates. Total non-cancer hazard of Ni and Hg, were greater than 1, and total cancer risk of As and Pb was greater than 1 × 10?6. Food consumption was identified as the major route of human exposure to metals, and consuming foodstuff threatens the health of the studied population. In Hamedan Province, consumption of wheat is the main source of intake of metals from foodstuff for adults, and in children, the soil ingestion route is also important.  相似文献   
8.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   
9.
This study investigated the effect of exogenous amino acids on apoplastic and symplastic uptake and root to shoot translocation of nickel (Ni) in two wheat cultivars. Seedlings of a bread (Triticum aestivum cv. Back Cross) and a durum wheat cultivar (T. durum cv. Durum) were grown in a modified Johnson nutrient solution and exposed to two levels (50 and 100 μM) of histidine, glycine, and glutamine. Application of amino acids resulted in increasing symplastic to apoplastic Ni ratio in roots of both wheat cultivars, although glutamine and glycine were more effective than histidine under our experimental conditions. The amino acid used in the present study generally increased the relative transport of Ni from the roots to shoots in both wheat cultivars. Higher amounts of Ni were translocated to wheat shoots in the presence of histidine than the other amino acids studied, which indicated that histidine was more effective in translocation of Ni from roots to shoots. Amino acids used in the present study largely increased root symplastic Ni, but shoot Ni accumulation was much lower than the total Ni accumulation in roots, indicating a large proportion of Ni was retained or immobilized in wheat roots (either in the apoplastic or symplastic space), with only a very small fraction of Ni being translocated from the root to the shoot. According to the results, glutamine and glycine were more effective than histidine in enhancing the symplastic to apoplastic Ni ratio in the roots, while more Ni was translocated from the roots to the shoots in the presence of histidine.  相似文献   
10.
There is limited information concerning the effect of salinity on phytosiderophores exudation from wheat roots. The aim of this hydroponic experiment was to investigate the effect of salinity on phytosiderophore release by roots of three bread wheat genotypes differing in Zn efficiency (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) under Zn deficiency conditions. Wheat seedlings were transferred to Zn-free nutrient solutions and exposed to three salinity levels (0, 60, and 120 mM NaCl). The results indicated that Cross and Rushan genotypes exuded more phytosiderophore than did the Kavir genotype. Our findings suggest that the adaptive capacity of Zn-efficient ‘Cross’ and ‘Rushan’ wheat genotypes to Zn deficiency is due partly to the higher amounts of phytosiderophore release. Only 15 days of Zn deficiency stress was sufficient to distinguish between Zn-efficient (Rushan and Cross) and Zn-inefficient (Kavir) genotypes, with the former genotypes exuding more phytosiderophore than the latter. Higher phytosiderophore exudation under Zn deficiency conditions was accompanied by greater Fe transport from root to shoot. The maximum amount of phytosiderophore was exuded at the third week in ‘Cross’ and at the fourth week in ‘Kavir’ and ‘Rushan’. For all three wheat genotypes, salinity stress resulted in higher amounts of phytosiderophore exuded by the roots. In general, for ‘Kavir’, the largest amount of phytosiderophore was exuded from the roots at the highest salinity level (120 mM NaCl), while for ‘Cross’ and ‘Rushan’, no significant difference was found in phytosiderophore exudation between the 60 and 120 mM NaCl treatments. More investigation is needed to fully understand the physiology of elevated phytosiderophore release by Zn-deficient wheat plants under salinity conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号