首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2446篇
  免费   205篇
  国内免费   4篇
  2024年   5篇
  2023年   18篇
  2022年   65篇
  2021年   89篇
  2020年   86篇
  2019年   176篇
  2018年   126篇
  2017年   66篇
  2016年   103篇
  2015年   128篇
  2014年   108篇
  2013年   166篇
  2012年   210篇
  2011年   187篇
  2010年   104篇
  2009年   102篇
  2008年   119篇
  2007年   112篇
  2006年   100篇
  2005年   78篇
  2004年   61篇
  2003年   69篇
  2002年   56篇
  2001年   18篇
  2000年   19篇
  1999年   18篇
  1998年   14篇
  1997年   15篇
  1995年   9篇
  1994年   8篇
  1993年   8篇
  1992年   14篇
  1991年   9篇
  1990年   12篇
  1989年   14篇
  1988年   14篇
  1987年   17篇
  1986年   16篇
  1985年   16篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1979年   6篇
  1978年   9篇
  1977年   11篇
  1976年   5篇
  1973年   6篇
  1971年   4篇
  1969年   4篇
  1968年   4篇
排序方式: 共有2655条查询结果,搜索用时 15 毫秒
1.
A Na+/H+ exchanger is involved in the regulation of cytoplasmic pH and cellular volume in a variety of cells. Little is known about the molecular nature of this exchanger. The purpose of this study was to survey a variety of group-specific covalent reagents as potential inhibitors of the exchanger. Na+/H+ countertransport activity was assayed as the amiloride-sensitive rate of Na+-induced alkalinization in acid-loaded lymphocytes, or as the rate of swelling in cells suspended in sodium propionate medium. Activity was not affected by proteinases or by carboxyl-group and amino-group specific reagents. A significant inhibition was produced by diethylpyrocarbonate, a histidine-specific reagent and by N-ethylmaleimide, a sulfhydryl group reagent. A similarly reactive but nonpermeating sulfhydryl agent, glutathione-maleimide, failed to inhibit Na+-H+ exchange. Moreover, the reaction with N-ethylmaleimide was sensitive to changes in the cytoplasmic pH. The data suggest that the chemically reactive groups of the Na+/H+ exchanger of lymphocytes have limited exposure to the extracellular medium but that an internally located sulfhydryl group is critical for the cation-exchange activity.  相似文献   
2.
3.
4.
5.
6.
Orobates pabsti, a basal diadectid from the lower Permian, is a key fossil for the understanding of early amniote evolution. Quantitative analysis of anatomical information suffers from fragmentation of fossil bones, plastic deformation due to diagenetic processes and fragile preservation within surrounding rock matrix, preventing further biomechanical investigation. Here we describe the steps taken to digitally reconstruct MNG 10181, the holotype specimen of Orobates pabsti, and subsequently use the digital reconstruction to assess body mass, position of the centre of mass in individual segments as well as the whole animal, and study joint mobility in the shoulder and hip joints. The shape of most fossil bone fragments could be recovered from micro-focus computed tomography scans. This also revealed structures that were hitherto hidden within the rock matrix. However, parts of the axial skeleton had to be modelled using relevant isolated bones from the same locality as templates. Based on the digital fossil, mass of MNG 10181 was estimated using a model of body shape that was varied within a plausible range to account for uncertainties of the dimension. In the mean estimate model the specimen had an estimated mass of circa 4 kg. Varying of the mass distribution amongst body segments further revealed that Orobates carried most of its weight on the hind limbs. Mostly unrestricted joint morphology further suggested that MNG 10181 was able to effectively generate propulsion with the pelvic limbs. The digital reconstruction is made available for future biomechanical studies.  相似文献   
7.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
8.
9.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   
10.
It has previously been shown that the B subunit of cholera toxin, which binds solely to the plasma membrane ganglioside GM1, stimulates the proliferation of rat thymic lymphocytes (Spiegel, S., P. H. Fishman, and R. J. Weber, 1985, Science [Wash. DC], 230:1285-1287). The purpose of this study was to identify which transmembrane signaling system(s) are activated by the B subunit of cholera toxin. We compared the effects of B subunit and concanavalin A (Con A), a potent mitogenic lectin, on a number of second messenger systems that are putative mediators of T cell activation. Changes in the fluorescence of quin2-loaded cells revealed that mitogenic doses of either B subunit or Con A induced rapid and sustained increases in cytoplasmic free Ca2+ ([Ca2+]i). Within 5 min, [Ca2+]i increased from a basal level of 69 +/- 4 to 136 +/- 17 and 185 +/- 24 nM, respectively. The effects of B subunit and Con A were additive and largely dependent on the presence of extracellular Ca2+, though release of Ca2+ from intracellular stores could be detected for Con A, but not B subunit, using indo-1. The B subunit had no effect on either inositol phosphate levels or on the distribution of protein kinase C, indicating that, unlike Con A, the B subunit does not activate phosphoinositide hydrolysis. Fluorimetric measurements on cells loaded with bis(carboxyethyl)-5,6-carboxyfluorescein revealed that Con A induced a rapid cytoplasmic alkalinization via activation of Na+/H+ exchange, whereas B subunit had no effect on intracellular pH. Finally, by monitoring bis-oxonol fluorescence, we found that Con A induced a small hyperpolarization of the membrane potential, whereas B subunit had no acute effect. These data suggest that the biological effects of B subunit are mediated by an increase in [Ca2+]i resulting from a net influx of extracellular Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号