首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   23篇
  国内免费   1篇
  2024年   2篇
  2023年   9篇
  2022年   26篇
  2021年   33篇
  2020年   12篇
  2019年   27篇
  2018年   31篇
  2017年   25篇
  2016年   34篇
  2015年   43篇
  2014年   37篇
  2013年   61篇
  2012年   42篇
  2011年   67篇
  2010年   31篇
  2009年   22篇
  2008年   23篇
  2007年   27篇
  2006年   28篇
  2005年   19篇
  2004年   14篇
  2003年   12篇
  2002年   16篇
  2001年   7篇
  2000年   9篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1987年   2篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   4篇
  1976年   2篇
  1974年   1篇
  1973年   6篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1960年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
1.
Lead is a heavy metal widely distributed in the environment. Lead is a ubiquitous environmental toxin that is capable of causing numerous acute and chronic illnesses. Human and animal exposure demonstrates that lead is nephrotoxic. However, attempts to reduce lead-induced nephrotoxicity were not found suitable for clinical use. Recently, flaxseed oil (FXO), a rich source of ω-3 fatty acids and lignans, has been shown to prevent/reduce the progression of certain types of cardiovascular and renal disorders. In view of this, the present study investigates the protective effect of FXO on lead acetate (PbAc)-induced renal damage. Rats were pre-fed normal diet and the diet rich in FXO for 14 days, and then, four doses of lead acetate (25 mg/kg body weight) were administered intraperitoneally while still on diet. Various serum parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), and oxidative stress were analyzed in rat kidney. PbAc nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. PbAc increased the activities of lactate dehydrogenase and NADP-malic enzyme, whereas it decreased malate and glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and BBM enzyme activities. PbAc caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased activities of superoxide dismutase, glutathione peroxidase, and catalase. In contrast, FXO alone enhanced the enzyme activities of carbohydrate metabolism, BBM, and antioxidant defense system. FXO feeding to PbAc-treated rats markedly enhanced resistance to PbAc-elicited deleterious effects. In conclusion, dietary FXO supplementation ameliorated PbAc-induced specific metabolic alterations and oxidative damage by empowering antioxidant defense mechanism and improving BBM integrity and energy metabolism.  相似文献   
2.
The production of micronuclei in mouse bone marrow by the pyrethroid insecticide, cypermethrin and the botanical insecticide, rotenone was examined. Three routes of administration were used for the insecticides: intraperitoneal, oral and dermal. The different routes of treatment with cypermethrin and rotenone caused toxicity of marrow as indicated by a significant increase in the percentage of polychromatic erythrocytes (PEs) over that of the control. Cypermethrin showed mutagenic potential as evidenced by a positive response in the micronucleus assay. Oral administration of the insecticide at a dietary level of 900 ppm for 7 and 14 consecutive days as well as double and multiple (total 4) dermal treatments (360 mg/kg body wt.) induced a statistically significant increase in the frequency of PEs with micronuclei. The conducted intraperitoneal (i.p.) treatments with cypermethrin: single injection at 60 and 180 mg/kg body wt., double and multiple injections (total 3) at 60 mg/kg body wt. did not affect the percentage of PEs with micronuclei. The different treatments with rotenone: single, double and multiple (i.p.) injections (total 3) at 2 and 3 mg/kg body wt., oral administration for 14 consecutive days at dietary level of 225 ppm and multiple dermal treatments (total 4) with 135 mg/kg body wt. showed no effect on the frequency of micronuclei in PEs.  相似文献   
3.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
4.
The interleukin-2 receptor (IL-2R) is composed of at least three cell surface subunits, IL-2R alpha, IL-2R beta, and IL-2R gamma c. On activated T-cells, the alpha- and beta-subunits exist as a preformed heterodimer that simultaneously captures the IL-2 ligand as the initial event in formation of the signaling complex. We used BIAcore to compare the binding of IL-2 to biosensor surfaces containing either the alpha-subunit, the beta-subunit, or both subunits together. The receptor ectodomains were immobilized in an oriented fashion on the dextran matrix through unique solvent-exposed thiols. Equilibrium analysis of the binding data established IL-2 dissociation constants for the individual alpha- and beta-subunits of 37 and 480 nM, respectively. Surfaces with both subunits immobilized, however, contained a receptor site of much higher affinity, suggesting the ligand was bound in a ternary complex with the alpha- and beta-subunits, similar to that reported for the pseudo-high-affinity receptor on cells. Because the binding responses had the additional complexity of being mass transport limited, obtaining accurate estimates for the kinetic rate constants required global fitting of the data sets from multiple surface densities of the receptors. A detailed kinetic analysis indicated that the higher-affinity binding sites detected on surfaces containing both alpha- and beta-subunits resulted from capture of IL-2 by a preformed complex of these subunits. Therefore, the biosensor analysis closely mimicked the recognition properties reported for these subunits on the cell surface, providing a convenient and powerful tool to assess the structure-function relationships of this and other multiple subunit receptor systems.  相似文献   
5.
6.
Our previous study of coxsackievirus B3 (CVB3)‐induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet‐On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation‐enhancing α‐mannosidase‐like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus‐activated caspase and subsequently degraded via the ubiquitin‐proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation‐independent and ubiquitin‐lysosome pathway. Finally, we demonstrated that CRISPR/Cas9‐mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non‐enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.  相似文献   
7.
The Envelope protein (E) is one of the four structural proteins encoded by the genome of SARS‐CoV and SARS‐CoV‐2 Coronaviruses. It is an integral membrane protein, highly expressed in the host cell, which is known to have an important role in Coronaviruses maturation, assembly and virulence. The E protein presents a PDZ‐binding motif at its C‐terminus. One of the key interactors of the E protein in the intracellular environment is the PDZ containing protein PALS1. This interaction is known to play a key role in the SARS‐CoV pathology and suspected to affect the integrity of the lung epithelia. In this paper we measured and compared the affinity of peptides mimicking the E protein from SARS‐CoV and SARS‐CoV‐2 for the PDZ domain of PALS1, through equilibrium and kinetic binding experiments. Our results support the hypothesis that the increased virulence of SARS‐CoV‐2 compared to SARS‐CoV may rely on the increased affinity of its Envelope protein for PALS1.  相似文献   
8.
BackgroundThe Gambia initiated a control programme for schistosomiasis in 2015. In light of this, recent and comprehensive data on schistosomiasis is required to effectively guide the control programme. This study aimed to evaluate the prevalence and associated risk factors of schistosomiasis among primary school children in The Gambia.MethodsWe utilised data from a previous study conducted in 2015 in 4 regions of The Gambia: North Bank Region (NBR), Lower River Region (LRR), Central River Region (CRR) and Upper River Region (URR). In the parent study, ten schools were selected randomly from each region. Urine and stool samples collected from 25 boys and 25 girls (7–14 years) in each school were examined for urinary schistosomiasis (Schistosoma haematobium infection) and intestinal schistosomiasis (Schistosoma mansoni infection) using urine filtration, dipstick and Kato-Katz methods.Principal findingsUrinary schistosomiasis had an overall prevalence of 10.2% while intestinal schistosomiasis had a prevalence of 0.3% among the sampled school children. Prevalence of urinary schistosomiasis was significantly different among regions (χ 2 = 279.958, df = 3, p < 0.001), with CRR (27.6%) being the most endemic region, followed by URR (12.0%), then LRR (0.6%), and NBR (0.0%). Prevalence of intestinal schistosomiasis was also significantly variable among regions, with 4 of the 5 positive cases detected in CRR and 1 case in URR. Every school sampled in CRR had at least one student infected with S. haematobium, 50% of schools in URR had S. haematobium infection, and just one school in LRR had S. haematobium infection. While S. haematobium infection was significantly higher in boys (χ 2 = 4.440, df = 1, p = 0.035), no significant difference in infection rate was observed among age groups (χ 2 = 0.882, df = 2, p = 0.643). Two of the 5 students infected with S. mansoni were boys and 3 were girls. Four of these 5 students were in the 10–12 years age group and 1 was in the 7–9 years age group. Macrohaematuria and microhaematuria were found to be statistically associated with presence of S. haematobium eggs in urine. Being a male was a risk factor of S. haematobium infection. Bathing, playing and swimming in water bodies were found to pose less risk for S. haematobium infection, indicating that the true water contact behaviour of children was possibly underrepresented.ConclusionThe findings of this study provide invaluable information on the prevalence of schistosomiasis in The Gambia. This was useful for the schistosomiasis control efforts of the country, as it guided mass drug administration campaigns in eligible districts in the study area. More studies on S. mansoni and its intermediate snail hosts are required to establish its true status in The Gambia. As children sometimes tend to provide responses that potentially please the research or their teacher, data collection frameworks and approaches that ensure true responses in studies involving children should be devised and used.  相似文献   
9.
We aimed to shed new light on the roles of microRNAs (miRNAs) in liver cancer using an integrative in silico bioinformatics analysis. A new protocol for target prediction and functional analysis is presented and applied to the 26 highly differentially deregulated miRNAs in hepatocellular carcinoma. This framework comprises: (1) the overlap of prediction results by four out of five target prediction tools, including TargetScan, PicTar, miRanda, DIANA-microT and miRDB (combining machine-learning, alignment, interaction energy and statistical tests in order to minimize false positives), (2) evidence from previous microarray analysis on the expression of these targets, (3) gene ontology (GO) and pathway enrichment analysis of the miRNA targets and their pathways and (4) linking these results to oncogenesis and cancer hallmarks. This yielded new insights into the roles of miRNAs in cancer hallmarks. Here we presented several key targets and hundreds of new targets that are significantly enriched in many new cancer-related hallmarks. In addition, we also revealed some known and new oncogenic pathways for liver cancer. These included the famous MAPK, TGFβ and cell cycle pathways. New insights were also provided into Wnt signaling, prostate cancer, axon guidance and oocyte meiosis pathways. These signaling and developmental pathways crosstalk to regulate stem cell transformation and implicate a role of miRNAs in hepatic stem cell deregulation and cancer development. By analyzing their complete interactome, we proposed new categorization for some of these miRNAs as either tumor-suppressors or oncomiRs with dual roles. Therefore some of these miRNAs may be addressed as therapeutic targets or used as therapeutic agents. Such dual roles thus expand the view of miRNAs as active maintainers of cellular homeostasis.  相似文献   
10.
We investigated leptin effects on lymphocyte interactions with hepatic-stellate-cells (HSCs). Leptin showed pro-fibrotic effects on HSCs with oxidative status imbalance.In co-cultures, leptin activates HSCs and consequently adhered HCV-lymphocytes more than healthy ones. Leptin also increased healthy and HCV lymphocyte proliferations; increased their reactive-oxygen-species; decreased antioxidants (reduced-glutathione) levels while inhibited apoptosis only of HCV-lymphocytes. The leptin-treated HCV-lymphocytes activated HSCs, increase interleukin-4 while decreased their apoptosis.Leptin-receptor-deficient (dbdb)-HSCs did not adhere lymphocytes. db/db-lymphocytes however showed fewer adherences to HSCs when compared to WT-counterparts.This study presents immune and oxidative modulatory effects of leptin on lymphocytes and their consequent interaction with HSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号