首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   13篇
  2016年   1篇
  2008年   1篇
  2005年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   
2.
Induction of the chloramphenicol acetyltransferase gene cat-86 in Bacillus subtilis results from the activation of translation of cat-86 mRNA. The inducers, chloramphenicol and amicetin, are thought to enable ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome binding site for the cat-86 coding sequence, designated RBS-3. The region of cat-86 mRNA which is 5' to the stem-loop contained two additional ribosome binding sites, RBS-1 and RBS-2, located 84 and 56 nucleotides, respectively, upstream from RBS-3. RBS-1 and RBS-2 were each followed by a potential translation initiation codon and a short open reading frame. Bal 31-generated deletions into the 5' end of the regulatory region that removed RBS-1 but did not enter RBS-2 caused a fourfold decrease in the uninduced and chloramphenicol-induced level of cat-86 expression and a more than 10-fold reduction in the amicetin-induced level of expression. Deletions that removed both RBS-1 and RBS-2 but did not enter the stem-loop abolished both chloramphenicol- and amicetin-inducible expression. These data indicate that RBS-2 and sequences 3' to RBS-2 are minimally essential to chloramphenicol induction. However, the presence of RBS-1 in the mRNA elevated the maximum level of expression obtained during chloramphenicol induction. These studies also demonstrate that induction of cat-86 by amicetin is highly dependent on RBS-1. To determine whether a correlation existed between RBS-1 and amicetin inducibility, we examined the sequence of the regulatory regions for two natural variants of cat-86, cat-66 and cat-57, which are chloramphenicol inducible but are very poorly induced by amicetin. Both contained nucleotide sequence differences from cat-86 in the vicinity of RBS-1 that would prevent translation of the leader peptide associated with RBS-1 in cat-86. In contrast, the regulatory regions got the three genes were virtually identical in the vicinity of RBS-2. These data indicate that efficient induction by amicetin requires sequences that are not essential for induction by chloramphenicol.  相似文献   
3.
4.
BACKGROUND: Both viral and nonviral carriers have been used to carry small interfering RNA molecules (siRNA) to their cytosolic mRNA target. To date, few peptide carriers have been developed that have proved effective for siRNA delivery. Our previous branched carriers composed of histidine and lysine were useful for transfection of plasmids. In this study, we determined if these and more highly branched HK polymers were effective carriers of siRNA. METHODS: Several branched polymers were synthesized on a Ranin Voyager synthesizer. These polymers were then screened for their ability to transfer siRNA into SVR-bag4 cells, MDA-MB-435 cells, and C6 cells. After one polymer, H3K8b, was identified as an effective carrier of siRNA, additional polymers were synthesized to determine the essential domains for siRNA transport. The size/zeta-potential of HK : siRNA complexes were measured with the N4 submicron particle size analyzer and the Delsa 440 SX zeta-potential analyzer, respectively. Toxicity of the highly branched polymers in complex with siRNA was investigated by flow cytometry. RESULTS: In an endothelial cell line (SVR-bag4) that stably expressed beta-galactosidase (beta-gal), an siRNA in complex with the H3K8b polymer inhibited beta-gal expression by more than 80%. In contrast, the polymer H2K4b, which was an effective carrier of plasmids, was not an efficient carrier of siRNA. The size and surface charge did not distinguish effective from ineffective HK carriers of siRNA. By modifying H3K8b, we then determined what properties of H3K8b augmented siRNA delivery. The histidine-rich domain and the length of the terminal arms of H3K8 were important for siRNA delivery. The modestly more effective analog of H3K8b containing an integrin ligand, H3K8b(+RGD), was able to inhibit markedly intracellular beta-gal expression. Furthermore, we determined that H3K8b(+RGD) in complex with a luciferase-targeting siRNA inhibited luciferase expression in MDA-MB-435 cells. At its optimal concentration for inhibiting its target, H3K8b(+RGD) : siRNA complex had minimal toxicity. In contrast, carriers of siRNA such as Oligofectamine and Lipofectamine 2000 were significantly more toxic. CONCLUSIONS: Both the degree of complexity and the sequence specificity are important factors to be considered for developing the HK carrier of siRNA. In particular, we found that certain branched HK polymers (H3K8b, H3K8b(+RGD), and similar structural analogs) with eight terminal branches and a histidine-rich domain were effective carriers of siRNA.  相似文献   
5.
6.
A mutation in Bacillus subtilis spo0A codon 97 suppressed the sporulation defect caused by the spo0A9V mutation. The suppressor activity of the codon 97 mutation was evident only in the presence of a novel spo0H allele. Our results suggest that the spo0A gene product interacts with the sigma factor subunit of RNA polymerase.  相似文献   
7.
The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.  相似文献   
8.
The mutation sup-3 in Bacillus subtilis suppresses ochre (TAA) mutations at each of three codons in the 5' end of the cat-86 coding sequence. The suppressor is shown to insert lysine at ochre codons. The efficiency of suppression by sup-3 is about 15%, as determined by changing a cat-86 Lys codon (codon 12) to an ochre codon and measuring the level of CAT in the suppressor-containing strain. The results obtained are discussed in light of previous observations that ochre mutations at cat leader codons 2 and 3 can be phenotypically suppressed by sup-3, whereas ochre mutations at leader codons 4 and 5 cannot. Translation of the cat leader is essential to inducible expression of cat. Our data support the interpretation that the nature of amino acids 2 through 5 of the leader peptide contributes to determining whether chloramphenicol can stall a ribosome in the leader, which in turn leads to induction of cat expression.  相似文献   
9.
10.
N P Ambulos  E J Duvall  P S Lovett 《Gene》1987,51(2-3):281-286
By modifying hybridization techniques which are currently available to analyze RNA molecules we have developed a sensitive and reproducible method for 'Northern' analysis of RNA from Bacillus subtilis. The use of a thin (1 mm) vertical 2% agarose-6% formaldehyde gel seems to allow more efficient transfer and higher resolution of RNA upon hybridization analysis than does the use of thicker horizontal slab gels. Our improved hybridization method results in greatly reduced background upon autoradiography regardless of whether or not 32P-labelled nick-translated probes or probes synthesized on M13 vectors were purified from the unincorporated radionucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号