首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   36篇
  1014篇
  2024年   8篇
  2023年   8篇
  2022年   22篇
  2021年   38篇
  2020年   22篇
  2019年   23篇
  2018年   26篇
  2017年   27篇
  2016年   47篇
  2015年   86篇
  2014年   68篇
  2013年   58篇
  2012年   79篇
  2011年   96篇
  2010年   58篇
  2009年   36篇
  2008年   55篇
  2007年   56篇
  2006年   38篇
  2005年   40篇
  2004年   32篇
  2003年   25篇
  2002年   17篇
  2001年   5篇
  2000年   3篇
  1999年   9篇
  1998年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
  1931年   1篇
排序方式: 共有1014条查询结果,搜索用时 0 毫秒
1.
A parametric finite element model of an osteocyte lacuna was developed to predict the microstructural response of the lacuna to imposed macroscopic strains. The model is composed of an osteocyte lacuna, a region of perilacunar tissue, canaliculi, and the surrounding bone tissue. A total of 45 different simulations were modeled with varying canalicular diameters, perilacunar tissue material moduli, and perilacunar tissue thicknesses. Maximum strain increased with a decrease in perilacunar tissue modulus and decreased with an increase in perilacunar tissue modulus, regardless of the thickness of the perilacunar region. An increase in the predicted maximum strain was observed with an increase in canalicular diameter from 0.362 to 0.421 microm. In response to the macroscopic application of strain, canalicular diameters increased 0.8% to over 1.0% depending on the perilacunar tissue modulus. Strain magnification factors of over 3 were predicted. However, varying the size of the perilacunar tissue region had no effect on the predicted perilacunar tissue strain. These results indicate that the application of average macroscopic strains similar to strain levels measured in vivo can result in significantly greater perilacunar tissue strains and canaliculi deformations. A decrease in the perilacunar tissue modulus amplifies the perilacunar tissue strain and canaliculi deformation while an increase in the local perilacunar tissue modulus attenuates this effect.  相似文献   
2.
3.
4.
It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993–2012) of Greater Prairie-Chicken (Tympanuchus cupido) lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy’s Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65%) moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken’s distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas) and management plans not view lek locations as static points, but rather as sites that shift around the landscape in response to shifting vegetation structure. Acknowledging shifting lek locations in these landscapes will help ensure conservation efforts are successful by targeting the appropriate areas for protection and management.  相似文献   
5.
6.
7.
8.
In mice, intravenous injections are commonly administered in the lateral tail vein. This technique is sometimes difficult to carry out and may cause stress to mice. Though injection through the retro-orbital venous sinus can provide certain advantages over lateral tail vein injection, this method is poorly defined and infrequently used. To compare the efficacy of these two routes of drug delivery, the authors injected MAFIA transgenic mice with the depletion agent AP20187, which selectively induces apoptosis in macrophages. Each mouse received five consecutive daily injections through either the lateral tail vein or the retro-orbital venous sinus. The authors then compared macrophage depletion in different tissues (lung, spleen, bone marrow and peritoneal exudate cells). Both routes of injection were similarly effective. A separate experiment using BALB/c mice indicated that retro-orbital venous sinus injection was the less stressful of the two methods.  相似文献   
9.
Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.  相似文献   
10.
The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions, including the synthesis of proteins and lipids, and regulation of intracellular calcium levels. This review focuses on the distinct and complex morphology of the ER. The structure of the ER is complex because of the numerous distinct domains that exist within one continuous membrane bilayer. These domains are shaped by interactions with the cytoskeleton, by proteins that stabilize membrane shape, and by a homotypic fusion machinery that allows the ER membrane to maintain its continuity and identity. The ER also contains domains that contact the plasma membrane (PM) and other organelles including the Golgi, endosomes, mitochondria, lipid droplets, and peroxisomes. ER contact sites with other organelles and the PM are both abundant and dispersed throughout the cytoplasm, suggesting that they too could influence the overall architecture of the ER. As we will discuss here, ER shape and distribution are regulated by many intrinsic and extrinsic forces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号