The human health risk of fluoride from the consumption of four commercial bivalve species collected from contaminated sites along the Egyptian Sea coasts was assessed. The fluoride concentration in soft and shell tissues of fresh bivalve species (Callista florida, Paphia textile, Donaxvittatus and Anadara diluvii) was determined. The predicted human health risk of fluoride from the consumption of the samples was studied by applying the calculations of estimated daily intake and hazard quotient for toddlers' (1.84–3.99 mg/kg/day and 15.1–32.7, respectively) and adults' (1.22–2.64 mg/kg/day and 10.0–21.7, respectively) ingestion. The fluoride contents in soft and shell tissues of bivalve samples along all the sampling locations were 0.38–0.64 and 0.56–0.69 mg/g with averages 0.50 ± 0.10 and 0.62 ± 0.05 mg/g, respectively. ANOVA and multiple regression analyses reflected that the accumulation of fluoride in bivalve species was influenced by the dimensions and weight of the bivalve species. The average calculated estimation of the daily intake of fluoride for toddlers and adults ingesting the bivalve species exceeded the lowest-observed-adverse-effect level of skeletal effects' value (LOAEL; 0.25 mg fluoride/kg/day). The evaluated hazard quotient values also pointed to the human health hazards that may be caused by bivalve consumption. 相似文献
This study evaluated the effect of application of the semisynthetic triterpenes 3β-acetoxy-norlup-20-one (F4) and 3-chloro-4α,14α-dimethyl-5α-cholest-8-ene (F6) triterpene derivatives from Euphorbia officinarum on the growth of tomato seedlings under normal conditions and when challenged with the pathogens Verticillium dahliae and Agrobacterium tumefaciens. Foliar spray of F4 and F6 significantly improved growth rate, fresh weight, dry weight, and leaf area. In addition, they enhanced several physiological parameters including photosynthetic pigments, proline content, and nitrate reductase activity. Moreover, they induced H2O2 accumulation and increased the activity of several antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase. They also enhanced disease resistance against V. dahliae and A. tumefaciens. These results suggest that the two semisynthetic triterpenes represent new plant growth regulators and inducers of plant disease resistance.
Betel Quid (BQ) chewing independently contributes to oral, hepatic and esophageal carcinomas. Strong association of breast cancer risk with BQ chewing in Northeast Indian population has been reported where this habit is prodigal. We investigated genomic alterations in breast cancer patients with and without BQ chewing exposure. Twenty six BQ chewers (BQC) and 17 non BQ chewer (NBQC) breast cancer patients from Northeast India were analyzed for genomic alterations and pathway networks using SNP array and IPA. BQC tumors showed significantly (P<0.01) higher total number of alterations, as compared with NBQC tumors, 48±17% versus 32±25 respectively. Incidence of gain in fragile sites in BQC tumors were significantly (P<0.001) higher as compared with NBQC tumors, 34 versus 23% respectively. Two chromosomal regions (7q33 and 21q22.13) were significantly (p<0.05) associated with BQC tumors while two regions (19p13.3-19p12 and 20q11.22) were significantly associated with NBQC tumors. GO terms oxidoreductase and aldo-keto reductase activity in BQC tumors in contrast to G-protein coupled receptor protein signaling pathway and cell surface receptor linked signal transduction in NBQC tumors were enriched in DAVID. One network "Drug Metabolism, Molecular Transport, Nucleic Acid Metabolism" including genes AKR1B1, AKR1B10, ETS2 etc in BQC and two networks "Molecular Transport, Nucleic Acid Metabolism, Small Molecule Biochemistry" and "Cellular Development, Embryonic Development, Organismal Development" including genes RPN2, EMR3, VAV1, NNAT and MUC16 etc were seen in NBQC. Common alterations (>30%) were seen in 27 regions. Three networks were significant in common regions with key roles of PTK2, RPN2, EMR3, VAV1, NNAT, MUC16, MYC and YWHAZ genes. These data show that breast cancer arising by environmental carcinogens exemplifies genetic alterations differing from those observed in the non exposed ones. A number of genetic changes are shared in both tumor groups considered as crucial in breast cancer progression. 相似文献
Salivary gland neoplasms exhibit complex histopathology in a variety of tumor types and treatment options depend largely on the stage of the cancer. Induced pluripotent stem cells (iPS) have been investigated for treating induced salivary gland cancer and for restoring salivary gland function. We investigated iPS treatment for salivary gland cancer both in vitro and in vivo. For our study in vitro, we re-programmed human skin fibroblasts to form iPS cells using a plasmid containing Oct4, Sox2, L-MYC and LIN28. For our study in vivo, we used 30 white male albino rats divided into the following groups of 10: group 1 (control): rats were injected with phosphate-buffered saline (PBS), group 2 induced squamous cell carcinoma (SCC): rat submandibular glands were injected with squamous carcinoma cells (SCC), group 3 (induced SCC/iPS): SCC treated rats treated with 5 × 106 iPS cells. Submandibular glands from rats of all groups were examined histologically and real time PCR was performed for amylase, and COX I and COX II gene expression. We confirmed that submandibular gland specimens included tumor tissue before starting treatment with iPS. iPS treated cases exhibited regeneration of salivary glands, although minor degenerative and vascularization changes remained. The acinar cells regained their proper organization, but continued to exhibit abnormal activity including hyperchromatism. iPS cells may be useful for treating salivary gland carcinomas. 相似文献
Seasonal variations in the hydrocarbon-degrading potential of soil samples from an unimpacted site in the Kuwaiti Burgan oil field environment were studied under mesophilic conditions. Hydrocarbon-degrading microorganisms occurred but varied all-year-round, and their numbers ranged from 1.3 x 10(7) to 9.3 x 10(7) CFU g(-1) dry soil, while hydrocarbon-degrading fungi ranged from 3.0 x 10(4) - 3.8 x 10(5) CFU g(-1) dry soil, depending on the sampling period. These hydrocarbon-degraders also comprised variable but generally high proportions of the total aerobic heterotrophic organisms (2 to > 98%) for bacteria and lower levels (7-9%) for fungi. The crude oil-degrading capacity of the oil-degrading populations (bacteria and fungi) ranged from 80-95% of the hexane-extractable fractions. Differential inhibition studies carried out on soil samples showed that bacteria were the greater contributors to hydrocarbon degradation (79-92%) than fungi. Pure hydrocarbon substrates, hexadecane and phenanthrene, were degraded to near completion after a 28-day incubation by both the bacterial and fungal portions of the soil flora. 相似文献
Atherosclerosis, now regarded as a chronic inflammatory disease of the arterial wall, and its clinical manifestations have increasingly been associated with rheumatoid arthritis (RA), supporting the notion that autoimmune diseases and vascular disorders share common etiological features. Indeed, evidence pertaining to this matter indicates that inflammation and its multiple components are the driving force behind the pathogenesis of these disorders. Interestingly, CD154 and its receptors have emerged as major players in the development of RA and atherosclerosis, which raises the possibility that this axis may represent an important biological link between both complications. Indeed, CD154 signaling elicits critical inflammatory responses that are common to the pathogenesis of both diseases. Here, we provide an overview of the traditional and disease-related interrelations between RA and vascular abnormalities, while focusing on CD154 as a potential mediator in the development of atherosclerotic events in RA patients. 相似文献