首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
The treatment of human peripheral blood monocytes with serotonin at concentrations 10(-3) and 10(-5) M over 20 minutes decreases a zymosan-induced luminol-dependent chemiluminescence of cells, whereas a 5 minutes treatment with serotonin at the concentration of 10(-5) M increases the chemoluminescence. The correlated change in monocyte capacity of secreting hydrogen peroxide has been registered. Serotonin activates, to a little extent, the monocyte capacity of phagocytizing the opsonised sheep erythrocyte. The maximum increase (2-3 times) of intracellular cAMP content and the decrease in cytosol cAMP-binding capacity are registered after a 5 minutes incubation. The lowering of the share of irreversibly bound in vitro cAMP under the influence of serotonin may suggest a preferable binding of cyclic nucleotide in vivo by regulatory subunits of cAMP-dependent protein kinase I.  相似文献   
2.
There is a renewed interest in developing high-intensity short wave capacitively-coupled radiofrequency (RF) electric-fields for nanoparticle-mediated tumor-targeted hyperthermia. However, the direct thermal effects of such high-intensity electric-fields (13.56 MHZ, 600 W) on normal and tumor tissues are not completely understood. In this study, we investigate the heating behavior and dielectric properties of normal mouse tissues and orthotopically-implanted human hepatocellular and pancreatic carcinoma xenografts. We note tumor-selective hyperthermia (relative to normal mouse tissues) in implanted xenografts that can be explained on the basis of differential dielectric properties. Furthermore, we demonstrate that repeated RF exposure of tumor-bearing mice can result in significant anti-tumor effects compared to control groups without detectable harm to normal mouse tissues.  相似文献   
3.
Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and in vitro. Ubiquitination of Cse4 by the small ubiquitin-related modifier (SUMO)-targeted ubiquitin ligase (STUbL) Slx5 plays a critical role in proteolysis of Cse4 and prevents mislocalization of Cse4 to euchromatin under normal physiological conditions. Accumulation of sumoylated Cse4 species and increased stability of Cse4 in slx5∆ strains suggest that sumoylation precedes ubiquitin-mediated proteolysis of Cse4. Slx5-mediated Cse4 proteolysis is independent of Psh1, since slx5∆ psh1∆ strains exhibit higher levels of Cse4 stability and mislocalization than either slx5∆ or psh1∆ strains. Our results demonstrate a role for Slx5 in ubiquitin-mediated proteolysis of Cse4 to prevent its mislocalization and maintain genome stability.  相似文献   
4.
Low expression of Fas by different tumors including osteosarcoma, correlates with poor prognosis. We found that osteosarcoma lung metastases from patients expressed negligible amounts of Fas, but primary tumors often expressed high Fas levels. The reason for this discrepancy is unknown. We hypothesized that because FasL is constitutively expressed in the lungs, Fas-positive (Fas(+)) tumor cells entering the lungs would bind with FasL and die from Fas-induced apoptosis, resulting in the "selection" of Fas-negative (Fas(-)) cells, which would eventually form metastases. To test this hypothesis, we injected K7 osteosarcoma cells, which express functional Fas in vitro, into mice and confirmed that its bone tumors were Fas(+), but lung metastases were Fas(-). Next, to inhibit Fas signaling without affecting Fas expression, we transfected these cells with a FADD-dominant negative (FDN) plasmid and developed K7/FDN cells. Metastases formed by K7/FDN cells contained Fas(+) tumor cells. Moreover, K7/FDN cells were retained in the lungs longer and formed more lung metastases than K7 cells. In addition, the incidence of lung metastases in FasL-deficient mice injected with K7 cells was higher than that in wild-type mice. Metastases from FasL-deficient mice but not from wild-type mice contained Fas(+) tumor cells. Based on that, we conclude that Fas(-) osteosarcoma cells are selected during lung metastases formation and that inhibition of Fas signaling in tumors or lack of FasL in the host environment allows the proliferation of Fas(+) osteosarcoma cells in the lungs and promotes metastases growth. Therefore, Fas may be considered as a new therapeutic target for osteosarcoma treatment.  相似文献   
5.
6.
A methodology for simple convenient preparation of bright, negatively or positively charged, water-soluble CdSe/ZnS core/shell nanocrystals (NCs) and their stabilization in aqueous solution is described. Single NCs can be detected using a standard epifluorescent microscope, ensuring a detection limit of one molecule coupled with an NC. NCs solubilized in water by DL-Cys were stabilized, to avoid aggregation, by poly(allylamine) and conjugated with polyclonal anti-mouse antibodies (Abs). NC-Abs conjugates were tested in dot-blots and exhibited retention of binding capacity within several nanograms of antigen detected. We further demonstrated the advantages of NC-Abs conjugates in the immunofluorescent detection and three-dimensional (3D) confocal analysis of p-glycoprotein (p-gp), one of the main mediators of the MDR phenotype, overexpressed in the membrane of MCF7r breast adenocarcinoma cells. Immunolabeling of p-gp with NC-Abs conjugates was 4200-, 2600-, and 420-fold more resistant to photobleaching than its labeling with fluorescein isothiocyanate-Abs, R-phycoerythrin-Abs, and AlexaFluor488-Abs, respectively. The labeling of p-gp with NC-Abs conjugates was highly specific, and the data were used for confocal reconstruction of 3D images of the p-gp distribution in the MCF7r cell membrane. Finally, we demonstrated the applicability of NC-Abs conjugates obtained by the method described to specific detection of antigens in paraffin-embedded formaldehyde-fixed cancer tissue specimens, using immunostaining of cytokeratin in skin basal carcinoma as an example. We conclude that the NC-Abs conjugates may serve as easy-to-do, highly sensitive, photostable labels for immunofluorescent analysis, immunohistochemical detection, and 3D confocal studies of membrane proteins and cells.  相似文献   
7.
Temperate grasslands have suffered disproportionally from conversion to cropland, degradation and fragmentation. A large proportion of the world’s remaining near-natural grassland is situated in Kazakhstan. We aimed to assess current and emerging threats to steppe and semi-desert biodiversity in Kazakhstan and evaluate conservation research priorities. We conducted a horizon-scanning exercise among conservationists from academia and practice. We first compiled a list of 45 potential threats. These were then ranked by the survey participants according to their perceived severity, the need for research on them, and their novelty. The highest-ranked threats were related to changes in land use (leading to habitat loss and deterioration), direct persecution of wildlife, and rapid infrastructure development due to economic and population growth. Research needs were identified largely in the same areas, and the mean scores of threat severity and research need were highly correlated. Novel threats comprised habitat loss by photovoltaic and wind power stations, climate change and changes in agriculture such as the introduction of biofuels. However, novelty was not correlated with threat severity or research priority, suggesting that the most severe threats are the established ones. Important goals towards more effective steppe and semi-desert conservation in Kazakhstan include more cross-sector collaboration (e.g. by involving stakeholders in conservation and agriculture), greater allocation of funds to under-staffed areas (e.g. protected area management), better representativeness and complementarity in the protected area system and enhanced data collection for wildlife monitoring and threat assessments (including the use of citizen-science databases).  相似文献   
8.
In this study, we re‐examine two species of freshwater gastropods of the genus Radix Montfort, 1810 (family Lymnaeidae), endemic to the geothermal springs in the Lake Baikal region in the southern part of eastern Siberia — Lymnaea (Radix) hakusyensis Kruglov et Starobogatov, 1989, and Lymnaea (Radix) thermobaicalica Kruglov et Starobogatov, 1989. The alleged species status of these endemics has been re‐assessed by means of an integrative approach combining molecular genetic taxonomy techniques with the traditional methods based on shell and soft body morphology. Phylogenetic reconstructions were made using both mitochondrial (COI) and nuclear (ITS2) DNA markers. We used topotypic samples of both species and specimens sampled from other sites around Lake Baikal. The results demonstrate that the two endemic species are only synonyms of a widespread Holarctic species, Radix auricularia (Linnaeus, 1758), and represent its intraspecific morph (ecotype) adapted to living in thermal springs. A new synonymy is proposed: Thermoradix Kruglov et Starobogatov, 1989 = Radix Montfort, 1810 (syn. n.).  相似文献   
9.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   
10.
Despite aggressive surgery, radiation therapy, and chemotherapy, glioblastoma multiforme (GBM) is refractory to therapy, recurs quickly, and results in a median survival time of only 14 months. The modulation of the apoptotic receptor Fas with cytotoxic agents could potentiate the response to therapy. However, Fas ligand (FasL) is not expressed in the brain and therefore this Fas-inducing cell death mechanism cannot be utilized. Vaccination of patients with gliomas has shown promising responses. In animal studies, brain tumors of vaccinated mice were infiltrated with activated T cells. Since activated immune cells express FasL, we hypothesized that combination of immunotherapy with chemotherapy can activate Fas signaling, which could be responsible for a synergistic or additive effect of the combination. When we treated the human glioma cell line U-87 and GBM tumor cells isolated from patients with TPT, Fas was up regulated. Subsequent administration of soluble Fas ligand (sFasL) to treated cells significantly increased their cell death indicating that these Fas receptors were functional. Similar effect was observed when CD3+ T cells were used as a source of the FasL, indicating that the up regulated Fas expression on glioma cells increases their susceptibility to cytotoxic T cell killing. This additive effect was not observed when glioma cells were pre-treated with temozolomide, which was unable to increase Fas expression in tumor. Inhibition of FasL activity with the antagonistic antibody Nok-1 mitigated these effects confirming that these responses were specifically mediated by the Fas-FasL interaction. Furthermore, the CD3+ T cells co-cultured with topotecan treated U-87 and autologous GBM tumor cells showed a significant increase in expression in IFN-γ, a key cytokine produced by activated T cells, and accordingly enhanced tumor cytotoxicity. Based on our data we conclude that drugs, such as topotecan, which cause up regulation of Fas on glioma cells can be potentially exploited with immunotherapy to enhance immune clearance of tumors via Fas signaling. Jun Wei and Guillermo DeAngulo are Co-lead authors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号