首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   63篇
  2021年   5篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   5篇
  2016年   13篇
  2015年   20篇
  2014年   24篇
  2013年   21篇
  2012年   32篇
  2011年   30篇
  2010年   20篇
  2009年   22篇
  2008年   30篇
  2007年   22篇
  2006年   34篇
  2005年   24篇
  2004年   21篇
  2003年   29篇
  2002年   24篇
  2001年   22篇
  2000年   17篇
  1999年   14篇
  1998年   18篇
  1997年   6篇
  1996年   5篇
  1995年   13篇
  1993年   10篇
  1992年   16篇
  1991年   8篇
  1990年   12篇
  1989年   6篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1977年   5篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1969年   6篇
  1967年   2篇
  1966年   3篇
  1963年   2篇
排序方式: 共有627条查询结果,搜索用时 15 毫秒
1.
2.
3.
Fifteen restriction sites were mapped to the 28S ribosomal RNA gene of individuals representing 54 species of frogs, two species of salamanders, a caecilian, and a lungfish. Eight of these sites were present in all species examined, and two were found in all but one species. Alignment of these conserved restriction sites revealed, among anuran 28S rRNA genes, five regions of major length variation that correspond to four of 12 previously identified divergent domains of this gene. One of the divergent domains (DD8) consists of two regions of length variation separated by a short segment that is conserved at least throughout tetrapods. Most of the insertions, deletions, and restriction-site variations identified in the 28S gene will require sequence-level analysis for a detailed reconstruction of their history. However, an insertion in DD9 that is coextensive with frogs in the suborder Neobatrachia, a BstEII site that is limited to representatives of two leptodactylid subfamilies, and a deletion in DD10 that is found only in three ranoid genera are probably synapomorphies.   相似文献   
4.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
5.
A bacteriophage growing on Escherichia coli K13, K20, and K23 strains carries a glycanase that catalyzes the hydrolytic cleavage of the beta-ketopyranosidic linkages of 3-deoxy-D-manno-2-octulosonic acid (KDO) in the respective capsular polysaccharides. The main cleavage product of the K23 polysaccharide has been identified by 1H- and 13C-n.m.r. spectroscopy as beta beta Ribfl----7 beta KDOp2----3-beta Ribfl----7KDO. Cleavage of polysaccharides containing alpha-pyranosidic, or 5-substituted beta-pyranosidic KDO is not catalyzed by the enzyme.  相似文献   
6.
In vitro cultivated fibroblasts derived either from patients with Fanconi's anemia (FA) or from healthy probands were analyzed for their DNA repair-dependent NAD+ metabolism. No difference in NAD+ pools was found. NAD+ consumption after cell damage by u.v. irradiation was, however, significantly reduced in FA cells. Several FA cell lines had a lowered ability to transfer ADP-ribose to acid-precipitable material. Additionally, a decreased activity of NAD: protein ADP-ribosyltransferase was found for three FA cell lines. Our data indicate, that FA is accompanied by a defective NAD+ metabolism during DNA repair.  相似文献   
7.
8.
9.
Nonglycosylated murine and human granulocyte-macrophage colony-stimulating factor have a molecular mass of approximately 14.5 kDa predicted from the primary amino acid sequence. The expression of both proteins in COS cells leads to a heterogeneous population of molecules that differ in the degree of glycosylation. Both human and murine molecules contain two N-linked glycosylation sites that are situated in nonhomologous locations along the linear sequence. Despite this difference both proteins show a similar size distribution among the glycosylation variants. These studies analyze the effects of introducing in the murine protein novel N-linked glycosylation sites corresponding to those sites found in the human molecule. A panel of molecules composed of various combinations of human N-linked glycosylation sites in either the presence or the absence of murine N-linked glycosylation was compared. Substitution of a proper human N-linked glycosylation consensus sequence at Asn 24 did not result in N-linked glycosylation, nor was there any considerable effect on bioactivity. Replacement of the N-linked glycosylation consensus sequence at Asn 34 results in glycosylation similar to that found in the human molecule and causes a significant decrease in bioactivity. These data suggest that the position of N-linked glycosylation is critical for maximal bioactivity in a particular species and that the changes in position of these sites in different species probably occurred during evolution in response to changes in their receptors.  相似文献   
10.
A novel Arabidopsis thaliana (L.) Heynh. developmental mutant,waldmeister (wam), is described. This mutant was found in theprogeny arising from an Ac-Ds tagging experiment, but does notappear to be tagged by an introduced transposon. This recessivenuclear mutation maps between GAPB and ap1 on chromosome 1 andshows extreme morphological and physiological changes in bothfloral and vegetative tissues. Changes to the vegetative phenotypeinclude altered leaf morphology, multiple rosettes, stem fasciation,retarded senescence and disturbed geotropic growth. Changesto the floral phenotype include delayed flowering, increasednumber of inflorescences, determinate inflorescences, alterednumber and morphology of floral organs, chimeric floral organs,and ectopic ovules . wam was crossed to a number of previouslydescribed floral mutants: apetela 2, apetela 3, pistillata,agamous, and leafy. The phenotype of the double mutant was ineach case additive. In the case of agamous, however, the indeterminaterepetitive floral structure of agamous was lacking, emphasizingthe determinate inflorescence growth of wam. The extreme phenotypeof the wam mutant is suggestive of a disturbance to a gene ofglobal importance in the regulation of plant growth and development. Key words: Arabidopsis thaliana, waldmeister, developmental mutant, flower mutant  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号