首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   20篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   8篇
  2014年   1篇
  2013年   6篇
  2012年   10篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   11篇
  2007年   8篇
  2006年   4篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   13篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1966年   1篇
排序方式: 共有153条查询结果,搜索用时 31 毫秒
1.
2.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
3.
Mouse endothelioma cells expressing the polyoma middle T oncogene induced hemangiomas in a variety of species such as mice, rats, chicks, and quails. In embryos and newborn mice the hemangiomas expanded within 10-18 hr of injection, disrupting the vasculature and causing the death of the animal. In contrast, the hemangiomas formed a stable structure reminiscent of benign human hemangiomas in adult mice within 5 days. Analysis of the cells comprising the hemangioma revealed that over 95% of the endothelial cells were host derived. No induction of host cell proliferation was detected, and no endothelial mitogens were secreted by the endothelioma cells in vitro. The maintenance of the hemangioma appeared to require the continuous presence of endothelioma cells. The results indicate that these endothelioma cells act as a potent stimulating agent in the rapid formation of hemangiomas by recruiting nonproliferating host endothelial cells.  相似文献   
4.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   
5.
BACKGROUND: It has been proposed that the prion, the infectious agent of transmissible spongiform encephalopathies, is PrPSc, a post-translationally modified form of the normal host protein PrPC. We showed previously that mice devoid of PrPC (Prn-p0/0) are completely resistant to scrapie. We now report on the unexpected response of heterozygous (Prn-p0/+) mice to scrapie infection. MATERIALS AND METHODS: Prn-p0/+, Prn-p0/0 and Prn-p+/+ mice were obtained from crosses of Prn-p0/+ mice. Mice were inoculated intracerebrally with mouse-adapted scrapie agent and the clinical progression of the disease recorded. Mice were sacrificed at intervals, PrPSc was determined as protease-resistant PrP and the prion titer by the incubation time assay. RESULTS: Prn-p0/+ mice, which have about half the normal level of PrPC in their brains, show enhanced resistance to scrapie, as manifested by a significant delay in onset and progression of clinical disease. However, while in wild type animals an increase in prion titer and PrPSc levels is followed within weeks by scrapie symptoms and death, heterozygous Prn-p0/+ mice remain free of symptoms for many months despite similar levels of scrapie infectivity and PrPSc. CONCLUSIONS: Our findings extend previous reports showing an inverse relationship between PrP expression level and incubation time for scrapie. However, contrary to expectation, overall accumulation of PrPSc and prions to a high level do not necessarily lead to clinical disease. These findings raise the question whether high titers of prion infectivity could also persist for long periods under natural circumstances in the absence of clinical symptoms.  相似文献   
6.
The role of the proto-oncogene c-src in mouse development has been investigated by studying the consequences of expressing its viral homologue, v-src. Embryonic stem (ES) cell lines with differing levels of v-src tyrosine kinase activity have been used to generate chimaeric mice. Whereas a low level of v-src expression is compatible with embryogenesis, chimaeras derived from ES clones with high levels of v-src activity develop abnormally and die on the 8th-9th day of gestation. These abnormalities are characterized by the formation of twin or multiple embryos within the same Reichert's membrane, and by the arrest of embryonic development at the late egg cylinder stage, accompanied by relative expansion of the visceral yolk sac (VYS) and hyperplasia of the VYS endoderm. These results demonstrate for the first time that deregulated expression of the src protooncogene product can induce developmental abnormalities during early embryogenesis.  相似文献   
7.
The endogenous cardiac activity rhythm of the Norway lobster Nephrops norvegicus was studied under constant conditions of darkness by means of a computer-aided monitoring system (CAPMON). Time series recordings of the heart rate (beats min?1) were obtained from 47 adult males freshly collected from the continental slope (400–430?m) in the western Mediterranean. Periodogram analysis revealed the occurrence of circadian periodicity (of around 24?h) in most cases. A large percentage of animals showed significant ultradian periods (of around 12 and 18?h). The analysis of the circadian time series revealed the occurrence of peaks of heart rate activity during the expected night phase of the cycle. These results are discussed in relation to the emergence and locomotor activity rhythms of the species.  相似文献   
8.
9.
Following intracerebral or peripheral inoculation of mice with scrapie prions, infectivity accumulates first in the spleen and only later in the brain. In the spleen of scrapie-infected mice, prions were found in association with T and B lymphocytes and to a somewhat lesser degree with the stroma, which contains the follicular dendritic cells (FDCs) but not with non-B, non-T cells; strikingly, no infectivity was found in lymphocytes from blood of the same mice. Transgenic PrP knockout mice expressing PrP restricted to either B or T lymphocytes show no prion replication in the lymphoreticular system. Therefore, splenic lymphocytes either acquire prions from another source or replicate them in dependency on other PrP-expressing cells. The essential role of FDCs in prion replication in spleen was shown by treating mice with soluble lymphotoxin-beta receptor, which led to disappearance of mature FDCs from the spleen and concomitantly abolished splenic prion accumulation and retarded neuroinvasion following intraperitoneal scrapie inoculation.  相似文献   
10.
Transepithelial prion transport by M cells   总被引:11,自引:0,他引:11  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号