首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   6篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   3篇
  1968年   1篇
  1966年   2篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
2.
3.
A new type of membrane-bound cytochrome c was found in a marine purple photosynthetic bacterium, Rhodovulum sulfidophilum. This cytochrome c was significantly accumulated in cells growing under anaerobic photosynthetic conditions and showed an apparent molecular mass of approximately 100 kDa when purified and analyzed by SDS-PAGE. The midpoint potential of this cytochrome c was 369 mV. Flash-induced kinetic measurements showed that this new cytochrome c can work as an electron donor to the photosynthetic reaction center. The gene coding for this cytochrome c was cloned and analyzed. The deduced molecular mass was nearly equal to 50 kDa. Its C-terminal heme-containing region showed the highest sequence identity to the water-soluble cytochrome c(2), although its predicted secondary structure resembles that of cytochrome c(y). Phylogenetic analyses suggested that this new cytochrome c has evolved from cytochrome c(2). We, thus, propose its designation as cytochrome c(2m). Mutants lacking this cytochrome or cytochrome c(2) showed the same growth rate as the wild type. However, a double mutant lacking both cytochrome c(2) and c(2m) showed no growth under photosynthetic conditions. It was concluded that either the membrane-bound cytochrome c(2m) or the water-soluble cytochrome c(2) work as a physiological electron carrier in the photosynthetic electron transfer pathway of Rvu. sulfidophilum.  相似文献   
4.
This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been designed to be complementary to the dynamic multi-compartmental system that simulates conditions in the stomach and small intestine described by Minekus et al. [Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ (1995) ATLA 23:197–209]. High densities of microorganisms, comparable to those found in the colon in vivo, were achieved by absorption of water and dialysis of metabolites through hollow-fibre membranes inside the reactor compartments. The dense chyme was mixed and transported by peristaltic movements. The potential of the system as a tool to study fermentation was demonstrated in experiments with pectin, fructo-oligosaccharide, lactulose and lactitol as substrates. Parameters such as total acid production and short-chain fatty acid (SCFA) patterns were determined with time to characterize the fermentation. The stability of the microflora in the system was tested after inoculation with fresh fecal samples and after inoculation with a microflora that was main-tained in a fermenter. Both approaches resulted in total anaerobic bacterial counts higher than 1010 colony-forming units/ml with physiological levels of Bifidobacterium, Lactobacillus, Enterobacteriaceae and Clostridium. The dry matter content was approximately 10%, while the total SCFA concentration was maintained at physiological concentrations with similar molar ratios for acetic acid, propionic acid and butyric acid as measured in vivo. Received: 4 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   
5.
New strategies to prevent or treat diseases have been focusing on innovative approaches, such as the oral administration of living recombinant micro-organisms delivering active compounds in the digestive environment. The survival rate and the ability of two recombinant Saccharomyces cerevisiae strains (WppV(5)H(6) and WppGSTV(5)H(6)) to initiate the synthesis and secrete either a model peptide (peptide-V(5)H(6), MW: 5.6 kDa) or a model protein (glutathione-S-transferase-V(5)H(6), MW: 31.5 kDa) were studied in a gastric-small intestinal system simulating human digestive conditions. The WppV(5)H(6) and WppGSTV(5)H(6) strains respectively showed 83.1%+/-9.6 (n=3) and 95.3%+/-22.7 (n=4) survival rates in the model upper digestive tract after 270 min of digestion. The secretion products were detected as early as 90 min after the yeast intake/gene induction in each compartment of the in vitro system, but mostly in the jejunum and ileum. The GST-V(5)H(6) concentrations in the digestive medium reached 15 ng ml(-1), close to values measured in batch cultures. These results open up new opportunities for the set up of drug delivery systems based on engineered yeasts secreting compounds directly in the digestive tract. The main potential medical applications include the development of oral vaccines, the correction of metabolic disorders and the in situ production of biological mediators.  相似文献   
6.
Several experimental data document an activation of the mitogen-activated protein kinases Erk1 and Erk2 by bradykinin (BK), an agonist of the kinin B2 receptor (B2R). In contrast, other reports showed an inhibitory modulation of mitogenesis by BK. Therefore, we explored in the isolated glomeruli the effect of B2R activation on the signaling of insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-BB (PDGF-BB), and high glucose (HG), three factors that are believed to be involved in the development of glomerulosclerosis via the phosphorylation of Erk1 and Erk2. We observed that the activation of B2R negatively modulates the phosphorylation of Erk1 and Erk2 induced by IGF-1, PDGF-BB, and HG in the glomerulus. These effects are consistent with the hypothesis of a protective role for BK in the kidney during development of glomerulosclerosis and renal pathologies associated with a hyperproliferative state.  相似文献   
7.
The use of genetically engineered microorganisms such as bacteria or yeasts as live vehicles to carry out bioconversion directly in the digestive environment is an important challenge for the development of innovative biodrugs. A system that mimics the human gastrointestinal tract was combined with a computer simulation to evaluate the survival rate and cinnamate 4-hydroxylase activity of a recombinant model of Saccharomyces cerevisiae expressing the plant P450 73A1. The yeasts showed a high level of resistance to gastric and small intestinal secretions (survival rate after 4 h of digestion, 95.6% +/- 10.1% [n = 4]) but were more sensitive to the colonic conditions (survival rate after 4 h of incubation, 35.9% +/- 2.7% [n = 3]). For the first time, the ability of recombinant S. cerevisiae to carry out a bioconversion reaction has been demonstrated throughout the gastrointestinal tract. In the gastric-small intestinal system, 41.0% +/- 5.8% (n = 3) of the ingested trans-cinnamic acid was converted into p-coumaric acid after 4 h of digestion, as well as 8.9% +/- 1.6% (n = 3) in the stomach, 13.8% +/- 3.3% (n = 3) in the duodenum, 11.8% +/- 3.4% (n = 3) in the jejunum, and 6.5% +/- 1.0% (n = 3) in the ileum. In the large intestinal system, cinnamate 4-hydroxylase activity was detected but was too weak to be quantified. These results suggest that S. cerevisiae may afford a useful host for the development of biodrugs and may provide an innovative system for the prevention or treatment of diseases that escape classical drug action. In particular, yeasts may provide a suitable vector for biodetoxication in the digestive environment.  相似文献   
8.
Following the January 2006 European ban of antibiotics used as growth promoters in the veal calf industry, new feed additives are needed in order to maintain animal health and growth performance. As an alternative to in vivo experiments in the testing of such additives, an in vitro system modeling the intestinal ecosystem of the veal calf was developed. Stabilization of the main cultured microbial groups and their metabolic activity were tracked in an in vitro continuous fermentor operated under anaerobiosis, at pH 6.5, and at a temperature of 38.5°C and supplied with one of three different nutritive media (M1, M2, or M3). These media mainly differed in their concentrations of simple and complex carbohydrates and in their lipid sources. In vitro microbial levels and fermentative metabolite concentrations were compared to in vivo data, and the biochemical composition of the nutritive media was compared to that of the veal calf intestinal content. All three nutritive media were able to stabilize anaerobic and facultative anaerobic microflora, lactate-utilizing bacteria, bifidobacteria, lactobacilli, enterococci, and Bacteroides fragilis group bacteria at levels close to in vivo values. The microbiota was metabolically active, with high concentrations of lactate, ammonia, and short-chain fatty acids found in the fermentative medium. Comparison with in vivo data indicated that M3 outperformed M1 and M2 in simulating the conditions encountered in the veal calf intestine. This in vitro system would be useful in the prescreening of new feed additives by studying their effect on the intestinal microbiota levels and fermentative metabolite production.European regulations introduced in January 2006 banned the use of antibiotics as growth promoters (AGP) at subtherapeutic levels in animal feed (regulation EC 1831/2003), particularly for veal calves. AGP generated significantly enhanced growth performance via complex processes. The mechanism of growth promotion is still speculative, but many studies suggest the involvement of the intestinal microbiota (7, 9). First of all, AGP did not promote the growth of germfree animals (6). Moreover, they strongly inhibited the bacterial catabolism of urea and amino acids and the fermentation of carbohydrates both in vitro and in vivo (10, 28, 35). AGP treatment thus provided the animal with higher nutrient availability and led to a decrease in the toxic metabolites produced by bacteria, like ammonia or amines, limiting the energy needed by the animal to detoxify the organism. Some authors also argue that another beneficial effect of AGP results from improved control of intestinal pathologies, such as necrotic enteritis in poultry (12). The January 2006 ban is thus expected to have an impact on veal calf health by leading to more frequent digestive disorders, as previously observed in pigs and poultry in the Nordic countries (36), where AGP have been totally prohibited since the 1990s. Even though no scientific study has yet been done on calves, there have already been reports of higher death rates on experimental commercial farms subsequent to the withdrawal of AGP. The main digestive diseases leading to veal calf deaths are enteritis and enterotoxemia, which are mainly triggered by pathogenic strains of Escherichia coli and Clostridium perfringens (22, 30).Veal calf producers are looking for new feed additives to allay the consequences of the AGP ban. Alternative approaches include the use of prebiotics, probiotics, or plant extracts. Several studies have reported both consistent improvements in weight gain and feed conversion and a reduction of the incidence of diarrhea with the addition of such additives to the veal calf diet (1, 11, 14). One of the hypotheses used to explain these beneficial effects involves the modulation of the intestinal microbiota. In particular, oligosaccharides containing mannose or fructose are known to selectively increase the growth of beneficial intestinal bacteria, including lactobacilli and bifidobacteria (21). Timmerman et al. (33) showed that a calf-specific probiotic containing six Lactobacillus species reduced the fecal counts of E. coli. Green tea extracts also improved the intestinal microbial balance by maintaining high fecal levels of Bifidobacterium and Lactobacillus spp. and decreasing those of C. perfringens (16).As indicated above, it is important to assess the action of newly developed feed additives on the veal calf intestinal microbiota. High interindividual variability makes it difficult and expensive to carry out in vivo studies. Alternatively, experiments can be conducted via in vitro systems modeling the intestinal environment of the animals, provided the model has been checked as pertinent. This approach should allow an economical and ethical way to prescreen feed additives by studying their effects on the intestinal microbiota cultured in the in vitro system and its metabolic activity. With this objective in mind, a necessary requirement is knowledge of the veal calf intestinal ecosystem. Thus, the bacterial and biochemical composition of the jejunoileal chyme of calves was previously characterized (13).The aims of the present study were (i) to set up an in vitro system where the main cultured microbial groups identified in the veal calf intestinal chyme are reproducibly stabilized and metabolically active and (ii) to validate our model by comparing the in vitro and in vivo levels of selected biotic and abiotic variables.  相似文献   
9.
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号