首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
  1956年   2篇
排序方式: 共有127条查询结果,搜索用时 296 毫秒
1.
Abstract In connection with the new type of forest damage, the individual disease situation of two-year-old spruce ( Picea abies ) needles was analyzed histopathologically in forest areas exposed to different levels of O3-, SO2- and NO3- pollution.
Early damage results from losses of chlorophyll in the mesophyll cells. The bleaching is more intensive towards the apex in severely damaged needles. The cytoplasm is aggregated at the cell wall and the chloroplasts show definite structural damage as well.
The mesophyll cells below the epidermis, or the cells adjacent to the vascular bundle sheath, appear to be particularly susceptible. Collapsed cells (bone cells), which increase in number with damage, can lead to tissue death in certain needle areas, (brown tips, transverse bands).
Necrotic spots are manifested as groups of dissociated cells in which hypertrophic and collapsed cells as well as abnormal proliferations can be observed.
Hypertrophy and cell collapse appear in the central cylinder in addition to severe phenol deposits.
Bone cells and chlorophyll losses can already be detected in the green needles of damaged trees, indicating latent damage, which becomes macroscopically visible only after more extensive damage.
Our results indicate that no biotic stress factors take part in the damage of the spruce needles investigated here. Anthropogenic air pollutants in addition to abiotic stress factors must be regarded as a main cause of damage.  相似文献   
2.
The redox-enzyme ferredoxin-NADP-oxidoreductase has been shown to be activated by light and inactivated in the dark. This review will summarize recent data concerning the biochemical characterization of the enzyme compared to its in-vivo activation. Further-more the mechanism of this activation process is discussed as a conformational change caused by the light-driven proton gradient.Abbreviations cyt cytochrome - fd ferredoxin - FNR1 large form of ferredoxin-NADP-oxidoreductase - FNRox oxidized FNR - FNRred reduced FNR - FNRs small form of FNR - FNRsq FNR-semiquinone  相似文献   
3.
Needles of four spruce trees showing different degrees of novel kinds of forest decline were investigated by electron microscopy. Green needles appearing at least superficially still intact were selected for the present investigation. Most of the mesophyll appeared to be undamaged. However, groups of atypical mesophyll cells were found close to the endodermis or the hypodermis. The chloroplasts of the apparently damaged cells were particularly affected. Changes in the matrix of the chloroplasts, i.e,. increased affinity to osmium, occurrence of extensive nests of plastoglobuli, as well as damage to the membranes, i.e. lesions in the envelope and abnormal thylakoid membranes, were observed. Signs of decomposition of other cellular structures including mitochondria were also detectable. There appeared to be a close correlation between the degree of damage at the whole tree level and the degree of damage occurring at the cellular level. It is concluded that particularly the lipids and the proteinsof, the membranes are affected by anthropogenic air pollutants and natural stressors. The altered membrane structure may for instance cause abnormal osmotic conditions for the cellular compartments and may impair transport processes and thus lead to lossof function not only of the cells but also of the whole needle.  相似文献   
4.
The role of D1-protein in photoinhibition was examined. Photoinhibition of spinach thylakoids at 20°C caused considerable degradation of D1-protein and a parallel loss of variable fluorescence, QB-independent electron flow and QB-dependent electron flow. The breakdown of D1-protein as well as the loss of variable fluorescence and QB-independent electron flow were largely prevented when thylakoids were photoinhibited at 0°C. The QB-dependent electron flow markedly decreased under the same conditions. This inactivation may represent the primary event in photoinhibition and could be the result of some modification at the QB-site of D1-protein. Evidence for this comes from fluorescence relaxation kinetics following photoinhibition at 0°C which indicate a partial inactivation of QA --reoxidation. These results support the idea of D1-protein breakdown during photoinhibition as a two step process consisting of an initial inactivation at the QB-site of the protein followed by its degradation. The latter is accompanied by the loss of PS II-reaction centre function.Abbreviations Asc ascorbate - p-BQ 1, 4-benzoquinone - DAD diaminodurene - DPC diphenylcarbazide - DQH2 duroquinole - Fecy ferricyanide - MV methylviologen - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - SiMo silicomolybdate  相似文献   
5.
Bloodstream form Trypanosoma theileri degrades glucose to acetate (47%) and succinate (45%) and, therefore, does not solely rely on glycolysis for ATP production. This trypanosomatid does not use amino acids for energy metabolism. These results refute the prevailing hypothesis that substrate availability determines the type of energy metabolism of trypanosomatids.  相似文献   
6.
The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-generating organelles of certain anaerobic unicellular eukaryotes, are believed to have evolved from the same ancestral endosymbiont that gave rise to present day mitochondria. Notably, the hydrogenosomes of the parasitic anaerobic flagellate Trichomonas seemed to be deficient in mitochondrial-type AACs. Instead, HMP 31, a different member of the mitochondrial carrier family (MCF) with a hitherto unknown function, is abundant in the hydrogenosomal membranes of Trichomonas vaginalis. Here we show that the homologous HMP 31 of closely related Trichomonas gallinae specifically transports ADP and ATP with high efficiency, as do genuine mitochondrial AACs. However, phylogenetic analysis and its resistance against bongkrekic acid (BKA, an efficient inhibitor of mitochondrial-type AACs) identify HMP 31 as a member of the mitochondrial carrier family that is distinct from all mitochondrial and hydrogenosomal AACs studied so far. Thus, our data support the hypothesis that the various hydrogenosomes evolved repeatedly and independently.  相似文献   
7.
8.
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD(+) at the expense of H(2). We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI(2). Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).  相似文献   
9.
Acetyl:succinate CoA-transferase (ASCT) is an acetate-producing enzyme shared by hydrogenosomes, mitochondria of trypanosomatids, and anaerobically functioning mitochondria. The gene encoding ASCT in the protozoan parasite Trypanosoma brucei was identified as a new member of the CoA transferase family. Its assignment to ASCT activity was confirmed by 1) a quantitative correlation of protein expression and activity upon RNA interference-mediated repression, 2) the absence of activity in homozygous Deltaasct/Deltaasct knock out cells, 3) mitochondrial colocalization of protein and activity, 4) increased activity and acetate excretion upon transgenic overexpression, and 5) depletion of ASCT activity from lysates upon immunoprecipitation. Genetic ablation of ASCT produced a severe growth phenotype, increased glucose consumption, and excretion of beta-hydroxybutyrate and pyruvate, indicating accumulation of acetyl-CoA. Analysis of the excreted end products of (13)C-enriched and (14)C-labeled glucose metabolism showed that acetate excretion was only slightly reduced. Adaptation to ASCT deficiency, however, was an infrequent event at the population level, indicating the importance of this enzyme. These studies show that ASCT is indeed involved in acetate production, but is not essential, as apparently it is not the only enzyme that produces acetate in T. brucei.  相似文献   
10.
Trypanosomes are unicellular parasites and like all decent parasites, they try to obtain from the host as much material as possible, including lipids. However, the needs of a parasite are not always the same as those of the host, and therefore, mostly, some biosynthetic work still has to be done by the parasite itself. Very often at least modifications of the lipid components that are acquired from the host have to be made. Furthermore, next to the lipids Trypanosoma brucei indeed obtains from the host, some other lipid components have to be synthesized de novo. Especially the processes where the metabolism of T. brucei differs from that of the host, will be discussed, as at least some of them are excellent targets for the development of urgently needed new chemotherapeutics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号