首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  6篇
  2016年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co‐occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub‐Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans‐Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.  相似文献   
2.
Rodents are the natural hosts for Leptotrombidium mites that transmit Orientia tsutsugamushi, the causative agent of scrub typhus, a potentially fatal febrile human disease. Utilizing mite lines that included O. tsutsugamushi infected and non-infected Leptotrombidium species we investigated the varied infection response of outbred mice (ICR) exposed to L. chiangraiensis (Lc), L. imphalum (Li) and L. deliense (Ld). Each of six mite lines (Lc1, Lc5, Li3, Li4, Li7 and Ld) was separately placed in the inner ears of ICR mice either as a single individual (individual feeding, IF) or as a group of 2-4 individuals (pool feeding, PF). The species of infected chigger feeding on mice significantly affected mortality rates of the mice, with mite lines of Lc causing higher mean (±SE) mortality (90.7 ± 3.6 %) than mite lines of Li (62.9 ± 5.6 %) or Ld (53.6 ± 5.8 %). Mouse responses which included time to death, food consumption and total mice weight change depended on mite species and their O. tsutsugamushi genotype, more than on feeding procedure (IF vs. PF) except for mite lines within the Lc. Infected mite lines of Lc were the most virulent infected mites assessed whereas the infected Ld species was the least virulent for the ICR. Mice killed by various mite lines showed enlarged spleens and produced ascites. The results of this investigation of the clinical responses of ICR mice to feeding by various infected mite lines indicated that the different species of infected mites and their O. tsutsugamushi genotype produced different clinical presentations in ICR mice, a scrub typhus mouse model which mimics the natural transmission of O. tsutsugamushi that is critical for understanding scrub typhus disease in terms of natural transmission, host-pathogen-vector interaction and vaccine development.  相似文献   
3.
BackgroundZika virus (ZIKV) has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV). Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown.Conclusions/SignificanceSPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two geographically and genetically distinct virus strains suggest a low potential for these species to serve as vectors.  相似文献   
4.
Understanding the processes by which species colonize and adapt to human habitats is particularly important in the case of disease-vectoring arthropods. The mosquito species Aedes aegypti, a major vector of dengue and yellow fever viruses, probably originated as a wild, zoophilic species in sub-Saharan Africa, where some populations still breed in tree holes in forested habitats. Many populations of the species, however, have evolved to thrive in human habitats and to bite humans. This includes some populations within Africa as well as almost all those outside Africa. It is not clear whether all domestic populations are genetically related and represent a single 'domestication' event, or whether association with human habitats has developed multiple times independently within the species. To test the hypotheses above, we screened 24 worldwide population samples of Ae. aegypti at 12 polymorphic microsatellite loci. We identified two distinct genetic clusters: one included all domestic populations outside of Africa and the other included both domestic and forest populations within Africa. This suggests that human association in Africa occurred independently from that in domestic populations across the rest of the world. Additionally, measures of genetic diversity support Ae. aegypti in Africa as the ancestral form of the species. Individuals from domestic populations outside Africa can reliably be assigned back to their population of origin, which will help determine the origins of new introductions of Ae. aegypti.  相似文献   
5.
Specific interactions between host genotypes and pathogen genotypes (G×G interactions) are commonly observed in invertebrate systems. Such specificity challenges our current understanding of invertebrate defenses against pathogens because it contrasts the limited discriminatory power of known invertebrate immune responses. Lack of a mechanistic explanation, however, has questioned the nature of host factors underlying G×G interactions. In this study, we aimed to determine whether G×G interactions observed between dengue viruses and their Aedes aegypti vectors in nature can be mapped to discrete loci in the mosquito genome and to document their genetic architecture. We developed an innovative genetic mapping strategy to survey G×G interactions using outbred mosquito families that were experimentally exposed to genetically distinct isolates of two dengue virus serotypes derived from human patients. Genetic loci associated with vector competence indices were detected in multiple regions of the mosquito genome. Importantly, correlation between genotype and phenotype was virus isolate-specific at several of these loci, indicating G×G interactions. The relatively high percentage of phenotypic variation explained by the markers associated with G×G interactions (ranging from 7.8% to 16.5%) is consistent with large-effect host genetic factors. Our data demonstrate that G×G interactions between dengue viruses and mosquito vectors can be assigned to physical regions of the mosquito genome, some of which have a large effect on the phenotype. This finding establishes the existence of tangible host genetic factors underlying specific interactions between invertebrates and their pathogens in a natural system. Fine mapping of the uncovered genetic loci will elucidate the molecular mechanisms of mosquito-virus specificity.  相似文献   
6.
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号