首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2015年   3篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   10篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有54条查询结果,搜索用时 343 毫秒
1.
Summary PST, a spontaneous mutant of Bacillus thuringiensis var. israelensis (B.t.i.) resistant to penicillin, streptomycin and tetracycline was isolated by serial selections. In the absence of antibiotics it showed genetic stability for 16 generations. Mosquito larvicidal activity of PST was similar to that of B.t.i., its parental strain. It also maintained the specific antigenicity of B.t.i. although its rate of growth was somewhat lower, a generation time of 55 min for PST vs. 38 min for B.t.i. Cell concentration plays a major role in the phenomenon of PST resistance to penicillin.This antibiotic resistant mutant of b.t.i. provides us with an efficient tool to trace B.t.i. among the indigenous bacteria present in septic habitats in the field as well as inside the larval gut.  相似文献   
2.
Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.  相似文献   
3.
E-cadherin plays a crucial structural role in cell-cell contacts in epithelial tissues, and a functional role in signaling pathways that regulate cell proliferation, differentiation, and survival. Reduced immunoexpression of E-cadherin adhesions is largely considered as being equivalent to defective functionality and malignancy, and has been used as a prognostic parameter. A critical analysis of studies on E-cadherin immunoexpression in oral carcinomas revealed a wide range of both technical and interpretational aspects. This paper highlights biological characteristics of E-cadherin with respect to its expression in normal and neoplastic epithelial cells and to its interrelations with the tumor microenvironment that can have an impact on immunohistochemical results and their application in the clinical setting.  相似文献   
4.
Computational fluid dynamic (CFD) analysis was used to model the effect of airway geometry on internal pressure in the upper airway of three children with obstructive sleep apnea syndrome (OSAS), and three controls. Model geometry was reconstructed from magnetic resonance images obtained during quiet tidal breathing, meshed with an unstructured grid, and solved at normative peak resting flow. The unsteady Reynolds-averaged Navier-Stokes equations were solved with steady flow boundary conditions in inspiration and expiration, using a two-equation low-Reynolds number turbulence model. Model results were validated using an in-vitro scale model, unsteady flow simulation, and reported nasal resistance measurements in children. Pharynx pressure drop strongly correlated to airway area restriction. Inspiratory pressure drop was primarily proportional to the square of flow, consistent with pressure losses due to convective acceleration caused by area restriction. On inspiration, in OSAS pressure drop occurred primarily between the choanae and the region where the adenoids overlap the tonsils (overlap region) due to airway narrowing, rather than in the nasal passages; in controls the majority of pressure drop was in the nasal passages. On expiration, in OSAS the majority of pressure drop occurred between the oropharynx (posterior to the tongue) and overlap region, and local minimum pressure in the overlap region was near atmospheric due to pressure recovery in the anterior nasopharynx. The results suggest that pharyngeal airway shape in children with OSAS significantly affects internal pressure distribution compared to nasal resistance. The model may also help explain regional dynamic airway narrowing during expiration.  相似文献   
5.
Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.  相似文献   
6.
Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.  相似文献   
7.
Epithelial stem cells are routinely lost or damaged during adult life and must therefore be replaced to maintain homeostasis. Recent studies indicate that stem cell replacement occurs through neutral competition in many types of epithelial tissues, but little is known about the factors that determine competitive outcome. The epithelial follicle stem cells (FSCs) in the Drosophila ovary are regularly lost and replaced during normal homeostasis, and we show that FSC replacement conforms to a model of neutral competition. In addition, we found that FSCs mutant for the basolateral junction genes, lethal giant larvae (lgl) or discs large (dlg), undergo a biased competition for niche occupancy characterized by increased invasion of neighboring FSCs and reduced loss. Interestingly, FSCs mutant for a third basolateral junction gene, scribble (scrib), do not exhibit biased competition, suggesting that Lgl and Dlg regulate niche competition through a Scrib-independent process. Lastly, we found that FSCs have a unique cell polarity characterized by broadly distributed adherens junctions and the lack of a mature apical domain. Collectively, these observations indicate that Lgl and Dlg promote the differentiation of FSC progeny to a state in which they are less prone to invade the neighboring niche. In addition, we demonstrate that the neutral drift model can be adapted to quantify non-neutral behavior of mutant clones.  相似文献   
8.
9.
10.
alpha-Synuclein is known to play a major role in the pathogenesis of Parkinson disease. We previously identified synphilin-1 as an alpha-synuclein-interacting protein and more recently found that synphilin-1 also interacts with the E3 ubiquitin ligases SIAH-1 and SIAH-2. SIAH proteins ubiquitylate synphilin-1 and promote its degradation through the ubiquitin proteasome system. Inability of the proteasome to degrade synphilin-1 promotes the formation of ubiquitylated inclusion bodies. We now show that synphilin-1 is phosphorylated by GSK3beta within amino acids 550-659 and that this phosphorylation is significantly decreased by pharmacological inhibition of GSK3beta and suppression of GSK3beta expression by small interfering RNA duplex. Mutation analysis showed that Ser556 is a major GSK3beta phosphorylation site in synphilin-1. GSK3beta co-immunoprecipitated with synphilin-1, and protein 14-3-3, an activator of GSK3beta activity, increased synphilin-1 phosphorylation. GSK3beta decreased the in vitro and in vivo ubiquitylation of synphilin-1 as well as its degradation promoted by SIAH. Pharmacological inhibition and small interfering RNA suppression of GSK3beta greatly increased ubiquitylation and inclusion body formation by SIAH. Additionally, synphilin-1 S556A mutant, which is less phosphorylated by GSK3beta, formed more inclusion bodies than wild type synphilin-1. Inhibition of GSK3beta in primary neuronal cultures decreased the levels of endogenous synphilin-1, indicating that synphilin-1 is a physiologic substrate of GSK3beta. Using GFPu as a reporter to measure proteasome function in vivo, we found that synphilin-1 S556A is more efficient in inhibiting the proteasome than wild type synphilin-1, raising the possibility that the degree of synphilin-1 phosphorylation may regulate the proteasome function. Activation of GSK3beta during endoplasmic reticulum stress and the specific phosphorylation of synphilin-1 by GSK3beta place synphilin-1 as a possible mediator of endoplasmic reticulum stress and proteasomal dysfunction observed in Parkinson disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号