首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   29篇
  2023年   2篇
  2022年   5篇
  2021年   14篇
  2020年   5篇
  2019年   9篇
  2018年   14篇
  2017年   12篇
  2016年   19篇
  2015年   20篇
  2014年   27篇
  2013年   25篇
  2012年   41篇
  2011年   24篇
  2010年   16篇
  2009年   15篇
  2008年   29篇
  2007年   21篇
  2006年   31篇
  2005年   13篇
  2004年   4篇
  2003年   15篇
  2002年   16篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
1.
The conformations of the transitory intermediates of the myosin ATPase occurring during the hydrolytic cycle, enzyme without ligand, enzyme-substrate complex and two different forms of enzyme-product complex, have been characterized in terms of numbers and classes of reactive thiol groups based on incorporation of radioactively labeled alkylation reagent. The techniques employed allowed this to be done under steady-state conditions in the presence of high ligand concentrations on intact myosin from rabbit fast skeletal muscles at low ionic strength where the protein is in the gel state as it is in muscle. The binding of a divalent cation (Mg2+ or Ca2+) nucleotide complex exposes thiol-1 as well as thiol-2 groups. The long-lived ATPase intermediate occurring at temperatures above 10 degrees C adopts the same conformation with Mg2+ and Ca2+ ions. This intermediate does not protect the thiol-1 and thiol-2 groups but exposes a number of thiol-3 groups which seem to be located distant from the active site. The conformation of the intermediate prevailing in the presence of ATP changes with lowering temperature below 10 degrees C and is identical with that found in the presence of ADP at 0 degree C indicating a change in the rate-limiting step of the hydrolytic cycle. In the absence of divalent cations no such temperature-dependent change in conformation was observed. Evaluation of the activation entropies shows that the structure of the long-lived intermediate occurring above 10 degrees C in the presence of Mg2+ ions goes through a transformation from low to high order at around 20 degrees C. In the case of the monovalent-cation-stimulated ATPase a constant activation energy of around 70 kJ/mol, typical of many enzyme reactions, was found over the entire temperature range from 0--35 degrees C.  相似文献   
2.
3.
4.
Phytophthora cinnamomi is a soil-borne plant pathogen that has caused widespread damage to vulnerable native ecosystems and agriculture systems across the world and shows no sign of abating. Management of the pathogen in the natural environment is difficult and the options are limited. In order to discover more about how resistant plants are able to defend themselves against this generalist pathogen, a microarray study of plant gene expression following root inoculation with P. cinnamomi was undertaken. Zea mays was used as a resistant model plant, and microarray analysis was conducted using the Affymetrix GeneChip Maize Genome Array on root samples collected at 6- and 24-h post-inoculation. Over 300 genes were differentially expressed in inoculated roots compared with controls across the two time points. Following Gene Ontology enrichment analysis and REVIGO visualisation of the up-regulated genes, many were implicated in plant defence responses to biotic stress. Genes that were up-regulated included those involved in phytoalexin biosynthesis and jasmonic acid/ethylene biosynthesis and other defence-related genes including those encoding glutathione S-transferases and serine-protease inhibitors. Of particular interest was the identification of the two most highly up-regulated genes, terpene synthase11 (Tps11) and kaurene synthase2 (An2), which are both involved in production of terpenoid phytoalexins. This is the first study that has investigated gene expression at a global level in roots in response to P. cinnamomi in a model plant species and provides valuable insights into the mechanisms involved in defence.  相似文献   
5.
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30–60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.  相似文献   
6.
Highlights? Derepression of HIF-2α mRNA in Irp1?/? mice causes age-dependent polycythemia ? HIF-2α hyperactivity is observed in multiple tissues of Irp1?/? mice ? The mRNA regulons of IRP1 and IRP2 are separable in vivo ? The IRP1-HIF-2α axis is a therapeutic target for hematologic or oncologic disorders  相似文献   
7.
Tumor differentiation factor (TDF) is a protein produced by the pituitary and secreted into the blood stream. The mechanism of its action has still not been elucidated, although the associated protein receptor was identified. Furthermore, the TDF protein does not have any homology with other known proteins, and the crystal structure of TDF also is not available at this time. To gain some insight into the structure of this rather underexplored protein, we have performed a molecular dynamics simulation of a model TDF structure. The structural stability of this protein is evaluated as a function of time. The time dependent structural changes of four cysteine residues present in this structure also are explored.  相似文献   
8.
The epidermal growth factor receptor (EGFR) signaling pathway regulates cell proliferation, differentiation, and survival, and is frequently dysregulated in esophageal and gastric cancers. Few studies have comprehensively examined the association between germline genetic variants in the EGFR pathway and risk of esophageal and gastric cancers. Based on a genome-wide association study in a Han Chinese population, we examined 3443 SNPs in 127 genes in the EGFR pathway for 1942 esophageal squamous cell carcinomas (ESCCs), 1758 gastric cancers (GCs), and 2111 controls. SNP-level analyses were conducted using logistic regression models. We applied the resampling-based adaptive rank truncated product approach to determine the gene- and pathway-level associations. The EGFR pathway was significantly associated with GC risk (P = 2.16×10−3). Gene-level analyses found 10 genes to be associated with GC, including FYN, MAPK8, MAP2K4, GNAI3, MAP2K1, TLN1, PRLR, PLCG2, RPS6KB2, and PIK3R3 (P<0.05). For ESCC, we did not observe a significant pathway-level association (P = 0.72), but gene-level analyses suggested associations between GNAI3, CHRNE, PAK4, WASL, and ITCH, and ESCC (P<0.05). Our data suggest an association between specific genes in the EGFR signaling pathway and risk of GC and ESCC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.  相似文献   
9.
Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks — osteoporotic cancellous bone surrogates — and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R2 = 0.86) and normalized pressure (R2 = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.  相似文献   
10.
We report a first of its kind functional cell surface display of nucleic acid polymerase and its directed evolution to efficiently incorporate 2′-O-methyl nucleotide triphosphates (2′-OMe-NTPs). In the development of polymerase cell surface display, two autotransporter proteins (Escherichia coli adhesin involved in diffuse adherence and Pseudomonas aeruginosa esterase A [EstA]) were employed to transport and anchor the 68-kDa Klenow fragment (KF) of E. coli DNA polymerase I on the surface of E. coli. The localization and function of the displayed KF were verified by analysis of cell outer membrane fractions, immunostaining, and fluorometric detection of synthesized DNA products. The EstA cell surface display system was applied to evolve KF for the incorporation of 2′-OMe-NTPs and a KF variant with a 50.7-fold increased ability to successively incorporate 2′-OMe-NTPs was discovered. Expanding the scope of cell-surface displayable proteins to the realm of polymerases provides a novel screening tool for tailoring polymerases to diverse application demands in a polymerase chain reaction and sequencing-based biotechnological and medical applications. Especially, cell surface display enables novel polymerase screening strategies in which the heat-lysis step is bypassed and thus allows the screening of mesophilic polymerases with broad application potentials ranging from diagnostics and DNA sequencing to replication of synthetic genetic polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号