首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1484篇
  免费   123篇
  1607篇
  2023年   7篇
  2022年   25篇
  2021年   51篇
  2020年   49篇
  2019年   48篇
  2018年   52篇
  2017年   61篇
  2016年   68篇
  2015年   94篇
  2014年   130篇
  2013年   126篇
  2012年   154篇
  2011年   101篇
  2010年   82篇
  2009年   59篇
  2008年   80篇
  2007年   74篇
  2006年   63篇
  2005年   51篇
  2004年   40篇
  2003年   45篇
  2002年   30篇
  2001年   12篇
  2000年   2篇
  1999年   9篇
  1998年   15篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   6篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有1607条查询结果,搜索用时 0 毫秒
1.
2.
Mini-F is a segment of the conjugative plasmid F consisting of two origins of replication flanked by regulatory regions, which ensure a normal control of replication and partitioning. Adjacent to the ori-2 origin is a complex coding region that consists of the E gene overlapped by three open reading frames with the coding potential for 9000 Mr polypeptides here designated 9 kd-1, 9 kd-2 and 9 kd-3. In this paper, we show that open reading frame 9 kd-3 is preceded by active promoter and Shine-Dalgarno sequences. The E coding region specifies: an initiator of replication, which acts at the ori-2 site; a function that negatively regulates the expression of the E gene; and a function involved in mini-F copy number control. To assign one of these functions to one of the overlapping coding sequence, we have isolated, characterized and sequenced mutations mapping in the E coding region. In this paper, we analyse two mutations (cop5 and pla25) that abolish the repression of the E gene. As these mutations affect the primary structure of protein E itself but not the 9 kd polypeptides, we conclude that protein E takes part in the negative regulation of its own synthesis. In addition, the localization of the cop5 and pla25 mutations indicates that the carboxy-terminal end of the E protein is involved in the autorepression function. The cop5 mutation causes an eightfold increase of the mini-F copy number. The pla25 mutation leads to the inability of the derived mini-F plasmid to give rise to plasmid-harbouring bacteria. The ways in which the cop5 and pla25 mutations may lead to such phenotypes are discussed in relation to the different functions mapping in the E coding sequence.  相似文献   
3.
Immunogenic tumor cell variant P35 was obtained by mutagen treatment of mouse mastocytoma P815. It express a potent new antigen recognized by syngeneic cytolytic T lymphocytes (CTL). This antigen is the result of a point mutation in a gene that is expressed by most healthy cells. A decapeptide encoded by the region spanning the mutation sensitized P815 cells to the relevant CTL, whereas the homologous decapeptide corresponding to the normal sequence did not. Only the mutant decapeptide was capable of enhancing the expression of the Dd-presenting molecule at the cell surface, indicating that the mutation generates a motif which enables the antigenic peptide to bind to Dd. Correspondence to: T. Boon.  相似文献   
4.
Post-translational methylation of proteins, which occurs in arginines and lysines, modulates several biological processes at different levels of cell signaling. Recently, methylation has been demonstrated in the regulation beyond histones, for example, in the dynamics of protein-protein and protein-nucleic acid interactions. However, the presence and role of non-histone methylation in Trypanosoma cruzi, the etiologic agent of Chagas disease, has not yet been elucidated. Here, we applied mass spectrometry-based-proteomics (LC-MS/MS) to profile the methylproteome of T. cruzi epimastigotes, describing a total of 1252 methyl sites in 824 proteins. Functional enrichment and protein-protein interaction analysis show that protein methylation impacts important biological processes of the parasite, such as translation, RNA and DNA binding, amino acid, and carbohydrate metabolism. In addition, 171 of the methylated proteins were previously reported to bear phosphorylation sites in T. cruzi, including flagellar proteins and RNA binding proteins, indicating that there may be an interplay between these different modifications in non-histone proteins. Our results show that a broad spectrum of functions is affected by methylation in T. cruzi, indicating its potential to impact important processes in the biology of the parasite and other trypanosomes.  相似文献   
5.
Summary In this paper, we report the construction in vitro of chimerae between lambdoid replacement vectors (Murray et al., 1977) and the miniF Apr plasmid: pSC138 (Timmis et al., 1975). F recombinants were shown to be chimerae between the and the F replicons. By genetical tests, we have demonstrated that both and F replication mechanisms are functional: the F recombinant behaves as a non defective plaque forming phage on sensitive bacteria and establishes itself as a stable plasmid on recA F- homoimmune bacteria. In the extra-chromosomal state, the F recombinant apparently retains the controlled autonomous replication and the FI incompatibility characteristics of the F plasmid. The potential experimental uses of these phages are discussed.  相似文献   
6.
7.
8.
Protein phosphatase 1 (PP1) is a key enzyme for Plasmodium development. However, the detailed mechanisms underlying its regulation remain to be deciphered. Here, we report the functional characterization of the Plasmodium berghei leucine-rich repeat protein 1 (PbLRR1), an orthologue of SDS22, one of the most ancient and conserved PP1 interactors. Our study shows that PbLRR1 is expressed during intra-erythrocytic development of the parasite, and up to the zygote stage in mosquitoes. PbLRR1 can be found in complex with PbPP1 in both asexual and sexual stages and inhibits its phosphatase activity. Genetic analysis demonstrates that PbLRR1 depletion adversely affects the development of oocysts. PbLRR1 interactome analysis associated with phospho-proteomics studies identifies several novel putative PbLRR1/PbPP1 partners. Some of these partners have previously been characterized as essential for the parasite sexual development. Interestingly, and for the first time, Inhibitor 3 (I3), a well-known and direct interactant of Plasmodium PP1, was found to be drastically hypophosphorylated in PbLRR1-depleted parasites. These data, along with the detection of I3 with PP1 in the LRR1 interactome, strongly suggest that the phosphorylation status of PbI3 is under the control of the PP1–LRR1 complex and could contribute (in)directly to oocyst development. This study provides new insights into previously unrecognized PbPP1 fine regulation of Plasmodium oocyst development through its interaction with PbLRR1.  相似文献   
9.
2',3'-Dideoxythymidine (ddThd) and its 2',3'-unsaturated derivative 2',3'-dideoxythymidinene (ddeThd) are potent and selective inhibitors of human immunodeficiency virus (HIV) in vitro. When evaluated for their inhibitory effects on the cytopathogenicity of HIV in MT-4 cells, ddThd and ddeThd completely protected the cells against destruction by the virus at a concentration of 1 microM and 0.04 microM, respectively. In this aspect, ddeThd was about 5 times more potent than 2',3'-dideoxycytidine (ddCyd), one of the most potent and selective anti-HIV compounds now pursued for its therapeutic potential in the treatment of AIDS. ddThd and ddeThd also suppressed HIV antigen expression at 1 microM and 0.04 microM, respectively. Their selectivity indexes, as based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, were 120 (ddeThd) and greater than 625 (ddThd).  相似文献   
10.
Inventory and monitoring of wine microbial consortia   总被引:2,自引:0,他引:2  
The evolution of the wine microbial ecosystem is generally restricted to Saccharomyces cerevisiae and Oenococcus oeni, which are the two main agents in the transformation of grape must into wine by acting during alcoholic and malolactic fermentation, respectively. But others species like the yeast Brettanomyces bruxellensis and certain ropy strains of Pediococcus parvulus can spoil the wine. The aim of this study was to address the composition of the system more precisely, identifying other components. The advantages of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach to wine microbial ecology studies are illustrated by bacteria and yeast species identification and their monitoring at each stage of wine production. After direct DNA extraction, PCR-DGGE was used to make the most exhaustive possible inventory of bacteria and yeast species found in a wine environment. Phylogenetic neighbor-joining trees were built to illustrate microbial diversity. PCR-DGGE was also combined with population enumeration in selective media to monitor microbial changes at all stages of production. Moreover, enrichment media helped to detect the appearance of spoilage species. The genetic diversity of the wine microbial community and its dynamics during winemaking were also described. Most importantly, our study provides a better understanding of the complexity and diversity of the wine microbial consortium at all stages of the winemaking process: on grape berries, in must during fermentation, and in wine during aging. On grapes, 52 different yeast species and 40 bacteria could be identified. The diversity was dramatically reduced during winemaking then during aging. Yeast and lactic acid bacteria were also isolated from very old vintages. B. bruxellensis and O. oeni were the most frequent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号