首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49179篇
  免费   5536篇
  国内免费   16篇
  54731篇
  2022年   461篇
  2021年   837篇
  2020年   456篇
  2019年   624篇
  2018年   714篇
  2017年   593篇
  2016年   1052篇
  2015年   1723篇
  2014年   1837篇
  2013年   2443篇
  2012年   2858篇
  2011年   2742篇
  2010年   1723篇
  2009年   1567篇
  2008年   2292篇
  2007年   2258篇
  2006年   2061篇
  2005年   1970篇
  2004年   1850篇
  2003年   1794篇
  2002年   1729篇
  2001年   1113篇
  2000年   1065篇
  1999年   952篇
  1998年   580篇
  1997年   517篇
  1996年   478篇
  1995年   429篇
  1994年   432篇
  1993年   445篇
  1992年   801篇
  1991年   735篇
  1990年   707篇
  1989年   745篇
  1988年   654篇
  1987年   673篇
  1986年   541篇
  1985年   653篇
  1984年   574篇
  1983年   447篇
  1982年   477篇
  1981年   428篇
  1980年   394篇
  1979年   511篇
  1978年   435篇
  1977年   395篇
  1976年   378篇
  1975年   404篇
  1974年   432篇
  1973年   416篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Potassium depletion decreases blood pressure in vivo and blunts the pressor response to angiotensin II (ang II) without down-regulating the receptor. In cultured rat aortic smooth muscle cells, the ang II-induced signaling sequence is biphasic with rapid hydrolysis of the polyphosphoinositides producing an early (15 s) diacylglycerol (DG) peak and a transient rise in inositol trisphosphate (IP3) and more delayed phosphatidylinositol (PI) hydrolysis resulting in sustained DG formation (peak at 5 min). Exposure of intact vascular smooth muscle cells to low potassium growth medium for 24 h or acutely potassium-depleting cells with nigericin causes selective, marked inhibition of late DG formation (5-min peak inhibited by 60 +/- 8% and 84 +/- 7%, respectively). The early cell response, namely polyphosphoinositide hydrolysis, inositol bis- and trisphosphate production and the 15-s DG peak, is not affected. Analysis of 125I-ang II-binding data reveals no significant differences in either receptor number or binding affinity (Kd) in potassium-depleted cells. Together with its marked inhibitory effect on sustained ang II-induced DG formation, acute potassium depletion effectively blocks internalization of 125I-ang II: there is no significant internalization of the ligand after 5 min at 37 degrees C versus 64 +/- 7% internalization in control cells. Thus, potassium depletion does not alter ang II binding or initial membrane signaling in rat aortic smooth muscle but blocks ligand internalization and selectively and markedly inhibits the development of direct PI hydrolysis and sustained diacylglycerol formation. These findings suggest a role for ligand-receptor processing in generating the sustained cell response and potentially explain the lower blood pressure and decreased pressor response to ang II seen in hypokalemic states in vivo. Furthermore, the ability of K+ depletion to alter secondary signal generation may provide insight into the mechanisms underlying the K+ dependence of a variety of cell functions.  相似文献   
2.
3.
4.
5.
Pseudorevertants of an Escherichia coli exonuclease V (RecBC enzyme)-negative mutant have been isolated after ethyl methane sulfonate mutagenesis of a recC73 (presumed missense) mutant. The remedial mutations in each of the four pseudorevertants studied in detail map and complement as recC mutations. By several criteria, such as recombination proficiency, support of phage growth, RecBC nuclease activity, and cell viability, the pseudorevertants appear to have regained partially or completely various aspects of RecBC activity. However, chi recombinational hotspots, which stimulate exclusively the RecBC pathway of recombination, have no detectable activity in lambda vegetative crosses in the pseudorevertants. The properties of these mutants, in which the RecBC pathway of recombination is active yet in which chi is not active, are consistent with the hypothesis that wild-type RecBC enzyme directly interacts with chi sites; alternatively, the mutants may block or bypass the productive interaction of another recombinational enzyme with chi.  相似文献   
6.
7.
8.
Selective diapedesis of Th1 cells induced by endothelial cell RANTES.   总被引:16,自引:0,他引:16  
Differentiated CD4 T cells can be divided into Th1 and Th2 types based on the cytokines they produce. Differential expression of chemokine receptors on either the Th1-type or the Th2-type cell suggests that Th1-type and Th2-type cells differ not only in cytokine production but also in their migratory capacity. Stimulation of endothelial cells with IFN-gamma selectively enhanced transmigration of Th1-type cells, but not Th2-type cells, in a transendothelial migration assay. Enhanced transmigration of Th1-type cells was dependent on the chemokine RANTES produced by endothelial cells, as indicated by the findings that Ab neutralizing RANTES, or Ab to its receptor CCR5, inhibited transmigration. Neutralizing Ab to chemokines macrophage-inflammatory protein-1alpha or monocyte chemotactic protein-1 did not inhibit Th1 selective migration. Whereas anti-CD18 and anti-CD54 blocked basal levels of Th1-type cell adherence to endothelial cells and also inhibited transmigration, anti-RANTES blocked only transmigration, indicating that RANTES appeared to induce transmigration of adherent T cells. RANTES seemed to promote diapedesis of adherent Th1-type cells by augmenting pseudopod formation in conjunction with actin rearrangement by a pathway that was sensitive to the phosphoinositol 3-kinase inhibitor wortmannin and to the Rho GTP-binding protein inhibitor, epidermal cell differentiation inhibitor. Thus, enhancement of Th1-type selective migration appeared to be responsible for the diapedesis induced by interaction between CCR5 on Th1-type cells and RANTES produced by endothelial cells. Further evidence that CCR5 and RANTES play a modulatory role in Th1-type selective migration derives from the abrogation of this migration by anti-RANTES and anti-CCR5 Abs.  相似文献   
9.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
10.
Morphological taxonomy of simple Hyphomycetes is complicated by the frequent occurrence of pleoanamorphism. In some groups of yeast-like fungi, uncommon synanamorphs are diagnostic. Differences in conidiogenesis do not always delimit natural groups. Some nomenclatural problems are mentioned, with an emphasis on the need of neotypification. Prospects are sketched for future taxonomic research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号