首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21915篇
  免费   2126篇
  国内免费   12篇
  2023年   109篇
  2022年   222篇
  2021年   580篇
  2020年   278篇
  2019年   407篇
  2018年   452篇
  2017年   360篇
  2016年   607篇
  2015年   1012篇
  2014年   1068篇
  2013年   1468篇
  2012年   1669篇
  2011年   1632篇
  2010年   1020篇
  2009年   890篇
  2008年   1265篇
  2007年   1264篇
  2006年   1136篇
  2005年   1067篇
  2004年   967篇
  2003年   913篇
  2002年   898篇
  2001年   260篇
  2000年   205篇
  1999年   228篇
  1998年   185篇
  1997年   160篇
  1996年   135篇
  1995年   129篇
  1994年   140篇
  1993年   130篇
  1992年   154篇
  1991年   144篇
  1990年   125篇
  1989年   126篇
  1988年   131篇
  1987年   103篇
  1986年   114篇
  1985年   126篇
  1984年   141篇
  1983年   84篇
  1982年   106篇
  1981年   87篇
  1980年   83篇
  1979年   93篇
  1978年   75篇
  1977年   71篇
  1976年   87篇
  1975年   76篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Potassium depletion decreases blood pressure in vivo and blunts the pressor response to angiotensin II (ang II) without down-regulating the receptor. In cultured rat aortic smooth muscle cells, the ang II-induced signaling sequence is biphasic with rapid hydrolysis of the polyphosphoinositides producing an early (15 s) diacylglycerol (DG) peak and a transient rise in inositol trisphosphate (IP3) and more delayed phosphatidylinositol (PI) hydrolysis resulting in sustained DG formation (peak at 5 min). Exposure of intact vascular smooth muscle cells to low potassium growth medium for 24 h or acutely potassium-depleting cells with nigericin causes selective, marked inhibition of late DG formation (5-min peak inhibited by 60 +/- 8% and 84 +/- 7%, respectively). The early cell response, namely polyphosphoinositide hydrolysis, inositol bis- and trisphosphate production and the 15-s DG peak, is not affected. Analysis of 125I-ang II-binding data reveals no significant differences in either receptor number or binding affinity (Kd) in potassium-depleted cells. Together with its marked inhibitory effect on sustained ang II-induced DG formation, acute potassium depletion effectively blocks internalization of 125I-ang II: there is no significant internalization of the ligand after 5 min at 37 degrees C versus 64 +/- 7% internalization in control cells. Thus, potassium depletion does not alter ang II binding or initial membrane signaling in rat aortic smooth muscle but blocks ligand internalization and selectively and markedly inhibits the development of direct PI hydrolysis and sustained diacylglycerol formation. These findings suggest a role for ligand-receptor processing in generating the sustained cell response and potentially explain the lower blood pressure and decreased pressor response to ang II seen in hypokalemic states in vivo. Furthermore, the ability of K+ depletion to alter secondary signal generation may provide insight into the mechanisms underlying the K+ dependence of a variety of cell functions.  相似文献   
2.
3.
4.
5.
6.
Red blood cell (RBC) adhesion to vessel wall endothelium is a potent catalyst of vascular occlusion and occurs in oxidative stress states such as hemoglobinopathies and cardiovascular conditions. These are often treated with vitamin E (VitE), a “classic” antioxidant. In this study, we examined the effects of VitE on RBC adhesion to vascular endothelial cells (EC), and on translocation of phosphatidylserine (PS) to RBC surface, known as a potent mediator of RBC/EC adhesion, facilitating thrombus formation. Treatment of RBC with VitE strongly induces (up to sevenfold) PS externalization and enhances (up to 20-fold) their adherence to EC. The VitE hydrophilic analogue—Trolox—does not incorporate into cell membranes. Trolox did not exhibit any of these effects, implying that the VitE effect is due to its known ability to incorporate into cell membranes. The membrane-incorporated VitE significantly reduced the level of reactive oxygen species in H2O2-treated RBC, demonstrating that VitE elevates RBC/EC adhesion despite acting as an anti-oxidant. This study demonstrates for the first time that contrary to the common view of VitE as a beneficial supplement, VitE may introduce a circulatory risk by inducing flow-disturbing RBC adherence to blood vessel wall and the pro-thrombotic PS exposure.  相似文献   
7.
8.
From experience in the Northampton/Kettering area 9 to 10% of all patients in a general hospital requiring care in an intensive therapy unit were aged 12 years or under. Fifty-nine children were admitted to the intensive therapy unit of Northampton General Hospital between May 1967 and August 1969. Of these, 22 had been injured in road traffic accidents, five were surgical emergencies, five had meningitis, four status epilepticus, and four respiratory infections.All of the 30 families interviewed were in favour of their child being admitted to the unit, and none considered that the experience had had any lasting adverse psychological effect on the child. It is suggested that certain carefully selected child patients do benefit from the facilities of an intensive therapy unit, and for this reason such units must be designed, equipped, and staffed with this in mind.  相似文献   
9.
Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection.  相似文献   
10.
Andrew C. Harper 《CMAJ》1980,123(5):400-401
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号