首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   956篇
  免费   78篇
  1034篇
  2024年   3篇
  2023年   10篇
  2022年   11篇
  2021年   26篇
  2020年   12篇
  2019年   21篇
  2018年   26篇
  2017年   20篇
  2016年   40篇
  2015年   69篇
  2014年   67篇
  2013年   81篇
  2012年   96篇
  2011年   77篇
  2010年   65篇
  2009年   46篇
  2008年   48篇
  2007年   69篇
  2006年   41篇
  2005年   34篇
  2004年   31篇
  2003年   33篇
  2002年   29篇
  2001年   6篇
  2000年   11篇
  1999年   10篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1966年   2篇
  1965年   1篇
排序方式: 共有1034条查询结果,搜索用时 10 毫秒
1.
The effect of interleukin 1 beta on prolactin secretion and on phosphoinositide turnover in anterior pituitary cells was evaluated. Interleukin 1 beta significantly inhibited TRH-stimulated prolactin secretion assessed by the reverse hemolytic plaque assay. In particular, the cytokine reduced the percentage of plaque forming cells, the plaque mean area, the large plaques percentage. TRH-stimulated inositol phosphate production was also significantly inhibited by interleukin 1 beta. This study shows that interleukin 1 beta reduces TRH-induced prolactin secretion through a direct action on pituitary cell, and attenuates the TRH-stimulated phosphoinositide breakdown. This latter effect may suggest that the reduced lactotropes sensitivity to TRH action may be partially due to interleukin 1 beta inhibition of phosphatidylinositol breakdown.  相似文献   
2.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   
3.
Inhibitors of the mammalian target of rapamycin (mTOR) have been proposed to improve vaccine responses, especially in the elderly. Accordingly, testing mTOR inhibitors (such as Sirolimus) and other geroprotective drugs might be considered a key strategy to improve overall health resilience of aged populations. In this respect, Sirolimus (also known as rapamycin) is of great interest, in consideration of the fact that it is extensively used in routine therapy and in clinical studies for the treatment of several diseases. Recently, Sirolimus has been considered in laboratory and clinical studies aimed to find novel protocols for the therapy of hemoglobinopathies (e.g. β-Thalassemia). The objective of the present study was to analyse the activity of CD4+ and CD8+ T cells in β-Thalassemia patients treated with Sirolimus, taking advantages from the availability of cellular samples of the NCT03877809 clinical trial. The approach was to verify IFN-γ releases following stimulation of peripheral blood mononuclear cells (PBMCs) to stimulatory CEF and CEFTA peptide pools, stimulatory for CD4+ and CD8+ T cells, respectively. The main results of the present study are that treatment of β-Thalassemia patients with Sirolimus has a positive impact on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ following stimulation with antigenic stimuli present in immunological memory. These data are to our knowledge novel and in our opinion of interest, in consideration of the fact that β-Thalassemia patients are considered prone to immune deficiency.  相似文献   
4.
In this study, we report the effect of pertussis toxin pretreatment on dihydropyridine modulation of voltage-sensitive calcium channels in PC12 cells. The rise in intracellular calcium concentration caused by potassium depolarization is not affected significantly by pertussis toxin pretreatment. Nicardipine, a dihydropyridine derivative, added either before or after potassium-induced depolarization, reduces the resultant elevation in cytosolic calcium level both in control and in pertussis toxin-treated cells. The dihydropyridine agonist Bay K 8644, when added before potassium, is able to enhance the potassium-induced spike of cytosolic calcium levels, an effect significantly reduced by pertussis toxin pretreatment. Moreover, the addition of Bay K 8644 after potassium holds the intracellular calcium concentration at a cytosolic sustained level during the slow inactivating phase of depolarization. This effect of Bay K 8644 is inhibited by nicardipine. Pertussis toxin pretreatment slightly weakens the effect of Bay K 8644 when added after potassium-induced depolarization, whereas it significantly reduces the nicardipine inhibition of cytosolic calcium rise stimulated by potassium and Bay K 8644, but not by potassium alone. In conclusion, our findings suggest that a pertussis toxin-sensitive guanine nucleotide regulatory protein could be involved in the interaction between dihydropyridine derivatives and voltage-dependent calcium channels.  相似文献   
5.
The primary (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive calcium channels is present in full-length (212 kDa) and truncated (190 kDa) forms which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. In the present study, phosphorylation of the purified calcium channel by cA-PK followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed differential phosphorylation of the related 190- and 212-kDa forms. The 190-kDa form of the alpha 1 subunit was phosphorylated on three major and three minor tryptic phosphopeptides; the 212-kDa form was phosphorylated on all six of these phosphopeptides plus two that were unique. Time course experiments showed that a single site on the COOH-terminal portion of the full-length form of the alpha 1 subunit is most intensely and rapidly (within 10 s) phosphorylated. Phosphorylation occurs almost exclusively on this COOH-terminal site unless harsh conditions such as treatment with denaturing detergents are employed to expose phosphorylation sites within the 190-kDa segment of the molecule. Elution of phosphopeptides from the second dimension chromatograph followed by immunoprecipitation with an anti-peptide antibody (anti-CP1) directed against the COOH-terminal amino acid sequence enabled us to identify this major phosphorylation site as serine 1854. The nearby consensus sites for cA-PK phosphorylation at serines 1757 and 1772 were phosphorylated only after denaturation or proteolytic cleavage. Phosphorylation of serine 1854 may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   
6.
We investigated the effect of interleukin-6 (IL-6) on second messenger systems in anterior pituitary (AP) cells. The acute exposition of membranes derived from the pituitary gland to IL-6 did not modify basal and forskolin-stimulated adenylate cyclase (AC) activity, as well as inositol phosphate (IP) production and free [Ca(++)]i. Preincubation of AP cells with IL-6 for 20 min did not affect basal second messengers levels, while completely abolished the stimulation by VIP of AC activity, partially inhibited forskolin-stimulated cAMP formation and reduced TRH-stimulated IP production. Finally, the pretreatment of AP cells for 20 min with IL-6 also reduced the TRH-induced rise in free [Ca(++)]i.  相似文献   
7.
8.
The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.  相似文献   
9.
The control of prolactin secretion by Ca calmodulin and cyclic AMP was studied. Ca++ ionophore A23187 stimulated both cyclic AMP accumulation and prolactin release by primary culture of anterior pituitary cells in vitro. The increase of cyclic AMP formation by A23187 preceded that of prolactin release. To test the calmodulin involvement in these processes we used either selective calmodulin antagonist, the naphthalene sulphonamide derivative W7, or calmodulin containing liposomes. W7 dose dependently inhibited both basal or A23187 stimulated cyclic AMP accumulation and prolactin secretion. Insertion of Ca calmodulin within the cells stimulated prolactin secretion without modifying cyclic AMP accumulation. W7 inhibited the Ca calmodulin containing liposomes stimulation of prolactin release. These results suggest that calmodulin participates to the process of prolactin release.  相似文献   
10.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号