首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1989年   1篇
  1980年   1篇
  1979年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
Bacteriophages of methanotrophic bacteria   总被引:2,自引:0,他引:2       下载免费PDF全文
Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that lysed Flavobacterium gasotypicum and, at the same time, 1 M. sporium strain. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. One-step growth characteristics of the phages differed only slightly; the latent period varied from 6 to 8 h, the rise period varied from 4 to 6 h, and the average burst size was 100. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. The molecular mass of the deoxyribonucleic acid as determined by restriction endonuclease analysis was 29.4 X 10(6) for M. sporium phages and 44 X 10(6) for F. gasotypicum phages. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups. Bacteriophages lysing M. sporium and M. trichosporium GB2 were identical to phages M1 and M4, respectively, which were isolated earlier in the German Democratic Republic on the same methanotrophic species.  相似文献   
2.
We studied the process of apoptosis in etiolated wheat (Triticum aestivum L.) seedlings. As a result, an integral pattern of the apoptotic plant cell ultrastructure was established. In the apoptotic cells of the coleoptile, we observed chromatin condensation and margination, an increased density and specific cytoplasm fragmentation accompanied by the appearance of unusual cytoplasmic vesicles containing subcellular organelles, mitochondria in particular, in the vacuoles.  相似文献   
3.
4.
This review considers modern data about the set, nature, specificity of action, and other properties of plant endonucleases involved in various forms of programmed cell death (PCD) in various plant tissues (organs). Apoptosis is an obligatory component of plant development; plant development is impossible without apoptosis. In dependence on the conditions of plant growth, this process can be induced by various biotic and abiotic factors, including stressors. Endonucleases accomplishing apoptotic degradation of nuclear material in the plant cell play one of the main roles in PCD. Plant endonucleases belong to at least two classes: (1) Ca2+- and Mg2+-dependent and (2) Zn2+-dependent nucleases. The set and activities of endonucleases change with plant age and during apoptosis in a tissue-specific manner. Apoptosis is accompanied by the induction of specific endonucleases hydrolyzing DNA in chromatin with the formation firstly of large domains and then internucleosomal DNA fragments; the products produced are of about 140 nucleotides in length with their subsequent degradation to low-molecular-weight oligonucleotides and mononucleotides. About 30 enzymes are involved in apoptotic DNA degradation. Histone H1 modulates endonuclease activity; separate (sub)fractions of this nuclear protein can stimulate or inhibit corresponding plant endonucleases. In the nucleus and cytoplasm of the plant cells, Ca2+/Mg2+-dependent endonucleases recognizing substrate DNA methylation status were revealed and described for the first time; their action resembles that of bacterial restrictases, which activity is modulated by the donor of methyl groups, S-adenosylmethionine. This indicates that higher eukaryotes (higher plants) might possess the system of restriction-modification to some degree analogous to that of prokaryotes.  相似文献   
5.
It was established that total proteolytic activity in etiolated wheat seedlings changes in ontogenesis in cycles: peaks of proteolytic activity correspond to the 3rd, 5th, and 8th days of seedling growth, respectively. The maximum of proteolytic activity preceded the maximum of nuclease activity, which may be due to activation of nucleases by proteolytic enzymes. According to inhibitory analysis the cysteine and serine proteases play the main role in apoptosis in wheat coleoptiles. Growing of seedlings in the presence of ethrel stimulated apoptosis in the coleoptile, and it increased (almost 6-fold) the proteolytic activity in its cells. On the other hand, the antioxidant ionol (BHT) suppressed the induction of proteases, particularly at the second stage of coleoptile development, and it slowed down the increase in the nuclease activity after 6th day of the seedling life. It is suggested that phytohormones and antioxidants participate in regulation of apoptosis in the ageing coleoptile, directly or indirectly effecting the proteolytic apparatus in the coleoptile cells.  相似文献   
6.
Unusual closed membrane vesicles containing one or more mitochondria were isolated from homogenates of aging wheat coleoptiles. Very similar (or the same) bodies were shown to exist in situ in vacuoles of undividing cells in the apical part of intact senescent coleoptiles. Vesicles isolated from coleoptile homogenate free of nuclei by 10 min centrifugation at 1700 x g and traditional mitochondria (sedimented at between 4300 x g and 17,400 x g) are similar in respiration rate, composition and content of cytochromes and sensitivity to respiration inhibitors. However, vesicles contain about 2-fold more Ca2+ ions than free mitochondria do. The specific feature of vesicles containing mitochondria in aging coleoptiles is an intensive synthesis of heavy (rho = 1.718 g/cm3) mitochondrial DNA (H-mtDNA). Thus, aging in plants is accompanied by an increased selective H-mtDNA production and change in subcellular organization of mitochondria.  相似文献   
7.
Ionol (BHT), a compound having antioxidant activity, at concentrations in the range 1-50 mg/liter (0.45·10-5-2.27·10-4 M), inhibits growth of etiolated wheat seedlings, changes the morphology of their organs, prolongs the coleoptile life span, and prevents the appearance of specific features of aging and apoptosis in plants. In particular, BHT prevents the age-dependent decrease in total DNA content, apoptotic internucleosomal fragmentation of nuclear DNA, appearance in the cell vac-uole of specific vesicles with active mitochondria intensively producing mtDNA, and formation of heavy mitochondrial DNA ( = 1.718 g/cm3) in coleoptiles of etiolated wheat seedlings. BHT induces large structural changes in the organization of all cellular organelles (nucleus, mitochondria, plastids, Golgi apparatus, endocytoplasmic reticulum) and the formation of new unusual membrane structures in the cytoplasm. BHT distorts the division of nuclei and cells, and this results in the appearance of multi-bladed polyploid nuclei and multinuclear cells. In roots of etiolated wheat seedlings, BHT induces intensive synthesis of pigments, presumably carotenoids, and the differentiation of plastids with formation of chloro- or chromoplasts. The observed multiple effects of BHT are due to its antioxidative properties (the structural BHT analog 3,5-di-tert-butyltoluene is physiologically inert; it has no effect similar to that of BHT). Therefore, the reactive oxygen species (ROS) controlled by BHT seem to trigger apoptosis and the structural reorganization of the cytoplasm in the apoptotic cell with formation of specific vac-uolar vesicles that contain active mitochondria intensively producing mtDNA. Thus, the inactivation of ROS by BHT may be responsible for the observed changes in the structure of all the mentioned cellular organelles. This corresponds to the idea that ROS control apoptosis and mitosis including formation of cell wall, and they are powerful secondary messengers that regulate dif-ferentiation of plastids and the Golgi apparatus in plants.  相似文献   
8.
Apoptosis was observed in the initial leaf of 5-8-day-old etiolated wheat seedlings. A condensation of cytoplasm in apoptotic cells, formation of myelin-like structures, specific fragmentation of cytoplasm, appearance in vacuoles of specific vesicles containing subcellular organelles, condensation and margination of chromatin in the nucleus, and internucleosomal fragmentation of nuclear DNA are ultrastructural features of apoptosis in the initial wheat leaf. Single-membrane vesicles detected in vacuoles of the leaf cells resemble in appearance the vacuolar vesicles in the coleoptile apoptotic cells described earlier (Bakeeva, L. E., et al. (1999) FEBS Lett., 457, 122-125); they contain preferentially plastids but not mitochondria as was observed in coleoptile. The vacuolar vesicles are specific for the apoptotic plant cells. Thus, apoptosis in various tissues is an obligatory element of plant (wheat) growth and development even in the early stages of ontogenesis. Contrary to strong geroprotecting action in coleoptile, the known antioxidant BHT (ionol, 2.27·10–4 M) does not prevent in the leaf cells the apoptotic internucleosomal DNA fragmentation and appearance of specific vacuolar vesicles containing subcellular organelles. Therefore, the antioxidant action on apoptosis in plants is tissue specific. Peroxides (H2O2, cumene hydroperoxide) stimulated apoptosis (internucleosomal DNA fragmentation) in coleoptile and induced it in an initial leaf when apoptosis in a control seedling leaf was not yet detected. Thus, apoptosis that is programmed in plant ontogenesis and controlled by reactive oxygen species (ROS) can be modulated by anti- and prooxidants.  相似文献   
9.
Senescence and wilting of the leaves of pea (Pisum sativum L.) of normal (AfAf) and aphyllous (afaf) genotypes were accompanied by DNA degradation. In young (12th–9th) subapical leaves of AfAf plants, total DNA was high-polymeric; in the 6th leaf, DNA degradation was appreciable; and in the 4th and 3rd leaves, hydrolysis of DNA was pronounced. Similar degradation of DNA was also observed in senescing leaves of aphyllous plants, but there it started later than in the plants of normal type. The extent of DNA degradation was closely related to the elevation of total nuclease activity in pea leaves associated with the age. The leaves of plants of different genotypes distinctly differed in the activity of acid and alkaline nucleases. Senescence of the leaves was accompanied by the induction of Ca2+-and Mg2+-dependent nucleases with mol wts of 42, 37, 34, 26, and 21 kD. In different stages of leaf senescence, different sets of nucleases were detected.  相似文献   
10.
The dynamics of changes in total proteolytic activity and activities of various groups of proteases in the coleoptiles of 3- to 12-day-old wheat seedlings grown in light with and without antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) was studied. It was established that the specialized proteases that easily hydrolyze specific synthetic substrates and the enzymes actively hydrolyzing histone H1 dominate in young coleoptiles of 3- to 4-day-old seedlings. Proteases that degrade equally well the majority of the studied substrates are accumulated in the cells of old coleoptiles of 11- to 12-day-old seedlings. Under the effect of BHT, the plants grown in the light (in comparison with etiolated seedlings) demonstrated a somewhat changed dynamics of proteolytic activity in young coleoptiles and the disappearance of proteases active toward histone H1. An inhibitory analysis revealed a relative domination of cysteine proteases in young coleoptiles at the initial development stage of seedlings, whereas the fraction of serine proteases markedly increased in old coleoptiles. We presume that the revealed quantitative and qualitative changes in the proteolytic apparatus of the coleoptile cells induced by BHT may be largely responsible for the retardant and geroprotective effect of this antioxidant in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号