首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   54篇
  国内免费   1篇
  2023年   8篇
  2022年   10篇
  2021年   36篇
  2020年   23篇
  2019年   35篇
  2018年   50篇
  2017年   35篇
  2016年   39篇
  2015年   44篇
  2014年   50篇
  2013年   38篇
  2012年   46篇
  2011年   22篇
  2010年   22篇
  2009年   16篇
  2008年   16篇
  2007年   14篇
  2006年   17篇
  2005年   14篇
  2004年   11篇
  2003年   10篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   6篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
  1964年   1篇
  1929年   1篇
排序方式: 共有602条查询结果,搜索用时 15 毫秒
1.
The use of rosemary essential oil (RO) and its combination with nisin (RO+N) in preventing the multiplication of Alicyclobacillus acidoterrestris in orange juice was evaluated. The minimum inhibitory and bactericidal concentrations (MIC and MBC) for RO were both 125 μg ml−1 while RO+N displayed a synergistic effect. The use of RO and RO+N at concentrations of 1, 4 and 8× MIC in orange juice for 96 h was evaluated in terms of their sporicidal effectiveness. With regard to the action against A. acidoterrestris spores, RO at 8× MIC was sporostatic, whereas RO+N at 1× MIC was sporicidal. Morphological changes in the structure of the micro-organism after treatment were also observed by microscopy. Furthermore, flow cytometric analysis showed that most cells were damaged or killed after treatment. In general, the antioxidant activity after addition of RO+N decreased with time. The results demonstrate that using the combination of RO and nisin can prevent the A. acidoterrestris growth in orange juice.  相似文献   
2.
1. (1) VO3 combines with high affinity to the Ca2+-ATPase and fully inhibits Ca2+-ATPase and Ca2+-phosphatase activities. Inhibition is associated with a parallel decrease in the steady-state level of the Ca2+-dependent phosphoenzyme.
2. (2) VO3 blocks hydrolysis of ATP at the catalytic site. The sites for VO3 also exhibit negative interactions in affinity with the regulatory sites for ATP of the Ca2+-ATPase.
3. (3) The sites for VO3 show positive interactions in affinity with sites for Mg2+ and K+. This accounts for the dependence on Mg2+ and K+ of the inhibition by VO3. Although, with less effectiveness, Na+ substitutes for K+ whereas Li+ does not. The apparent affinities for Mg2+ and K+ for inhibition by VO3 seem to be less than those for activation of the Ca2+-ATPase.
4. (4) Inhibition by VO3 is independent of Ca2+ at concentrations up to 50 μM. Higher concentrations of Ca2+ lead to a progressive release of the inhibitory effect of VO3.
Keywords: Ca2+-ATPase; Vanadate inhibition; K+; Li+; (Red cell membrane)  相似文献   
3.
4.
5.
Extremophiles - We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum,...  相似文献   
6.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   
7.
8.
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.  相似文献   
9.
Lectins are a group of proteins of non‐immune origin recognized for their ability to bind reversibly to carbohydrates. Researchers have been intrigued by oligosaccharides and glycoconjugates for their involvement as mediators of complex cellular events and then many biotechnological applications of lectins are based on glycocode decoding and their activities. Here, we report a structural and biological study of a ConA‐like mannose/glucose‐specific lectin from Canavalia bonariensis seeds, CaBo. More specifically, we evaluate the binding of CaBo with α‐methyl‐D‐mannoside (MMA) and mannose‐1,3‐α‐D‐mannose (M13) and the resultant in vivo effects on a rat model of acute inflammation. A virtual screening was also carried out to cover a larger number of possible bindings of CaBo. In silico analysis demonstrated the stability of CaBo interaction with mannose‐type ligands, and the lectin was able to induce acute inflammation in rats with the participation of the carbohydrate recognition domain (CRD) and histamine release. These results confirm the ability of CaBo to interact with hybrid and high‐mannose N‐glycans, supporting the hypothesis that CaBo's biological activity occurs primarily through its interaction with cell surface glycosylated receptors.  相似文献   
10.
Ngaba  Mbezele Junior Yannick  Bol  Roland  Hu  Ya-Lin 《Plant and Soil》2021,459(1-2):371-385
Plant and Soil - Land cover change (LCC) from natural forest (NF) to plantations (PF) has occurred worldwide over the past several decades. However, the different LCC effects on soil aggregate C...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号