首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   37篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   16篇
  2013年   23篇
  2012年   15篇
  2011年   18篇
  2010年   9篇
  2009年   11篇
  2008年   10篇
  2007年   12篇
  2006年   9篇
  2005年   12篇
  2004年   5篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   3篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
  1962年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
1.
We reported evidence that horseradish peroxidase (HRP) and chloroperoxidase (CPO) catalyze oxygen transfer from H2O2 to thioanisoles [Kobayashi, S., Nakano, M., Goto, T., Kimura, T., & Schaap, A. P. (1986) Biochem. Biophys. Res. Commun. 135, 166-171]. In the present paper, the reaction mechanism of this oxygen transfer is discussed. The oxidation of para-substituted thioanisoles by HRP compound II showed a large negative rho value of -1.46 vs. the sigma + parameter in a Hammett plot. These results are in accord with the formation of a cation radical intermediate in the rate-determining step. Hammett treatments for HRP- and CPO-dependent S-oxygenations did not provide unequivocal proofs to judge the reaction mechanism, because of the poor correlations for sigma + and sigma p parameters. Different behavior was found in kinetics and stereoselectivity between the two enzymes. Results in the present study and recent studies strongly suggested the formation of a cation radical intermediate. The oxygen atom would transfer by reaction of compound II and the cation radical intermediate. Although involvement of the cation radical was not confirmed in the CPO system, a similar mechanism was proposed for CPO.  相似文献   
2.
Abstract. Cell aggregation in Dictyostelium discoideum is a chemotactic process mediated by cyclic adenosine monophosphate (CAMP), which is detected by cell surface receptors. The cAMP signal is degraded by cAMP phosphodiesterase. The possibility that cAMP signals are also used for cell communication in the multicellular stages was studied by determining whether the cAMP receptors, which are essential for signal transduction, continue to function in these stages. During slug migration, the number of binding sites per cell decreases to about 15% of the maximum level acquired during aggregation. At the onset of fruiting body formation, a three- to Four-Fold increase in cAMP binding activity occurs. This increase coincides with an increase in cAMP phosphodiesterase. Both phenomena suggest that cell-cell communication mediated by cAMP is used during culmination. During both slug migration and early culmination, the prestalk cells exhibit about twice as much binding activity as the prespore cells.  相似文献   
3.
Summary Among all the Jewish families with Hunter patients in Israel, 10 were Ashkenazi or Moroccan in origin. In those families, there was a paucity of new mutations. In addition, a significant deviation of the segregation ratio between the Hunter gene and the normal allele was demonstrated among the offspring of heterozygous mothers or siblings of affected children in these families. These results confirm and extend our previous observations suggesting selection in favor of the X chromosome carrying the Hunter allele among Ashkenazi and Moroccan Jews.  相似文献   
4.
P Schaap  M Wang 《Cell》1986,45(1):137-144
We present evidence for the hypothesis that in multicellular structures of Dictyostelium, production of adenosine by hydrolysis of cAMP near the tip region prevents both generation of competing tips and differentiation of prespore cells near the tip, and thus establishes a "prestalk" region. We demonstrate that adenosine affects the immunological prespore specific staining pattern in slugs in a manner opposite to cAMP:cAMP induces an increase of prespore antigen; adenosine induces a decrease. When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region. Adenosine was found to inhibit the induction of prespore differentiation by cAMP in an apparently competitive manner. It was also found that adenosine specifically increased the amount of tissue controlled by one tip, probably by inhibiting generation of competing oscillators. Removing endogenous adenosine from slugs resulted in a decrease of tip dominance.  相似文献   
5.
The relationship between NADPH-dependent lipid peroxidation and the degradation of cytochrome P-450 has been studied in bovine adrenal cortex mitochondria. Malondialdehyde formation is accompanied by a corresponding decrease in total cytochrome P-450 content. Inhibitors of lipid peroxidation also prevent the loss of cytochrome P-450, further demonstrating a direct relationship between NADPH-dependent lipid peroxidation and degradation of P-450. To differentiate between cytochrome P-450(11)beta and P-450scc, steroid-induced difference spectra were used to evaluate P-450 degradation. These measurements provide the first evidence that both P-450's are degraded during NADPH-dependent lipid peroxidation with P-450(11)beta being much more susceptible to this process.  相似文献   
6.
7.
P Schaap  T Nebl    P R Fisher 《The EMBO journal》1996,15(19):5177-5183
During Dictyostelium stalk cell differentiation, cells vacuolate, synthesize a cellulose cell wall and die. This process of programmed cell death is accompanied by expression of the prestalk gene ecmB and induced by the differentiation inducing factor DIF. Using cell lines expressing the recombinant Ca2+-sensitive photoprotein apoaequorin, we found that 100 nM DIF increases cytosolic Ca2+ ([Ca2+]i) levels from approximately 50 to 150 nM over a period of 8 h. The Ca2+-ATPase inhibitor 2,5-di(tert-butyl)-1,4-hydroquinone (BHQ) induced a similar increase in [Ca2+]i levels and induced expression of the prestalk gene ecmB to the same level as DIF. The [Ca2+]i increases induced by DIF and BHQ showed similar kinetics and preceded ecmB gene expression by approximately 1-2 h. The Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N,N,N'N'-tetra-acetic acid (BAPTA) efficiently inhibited the BHQ-induced [Ca2+]i increase and blocked DIF-induced expression of the ecmB gene. These data indicate that the effects of DIF on stalk gene expression are mediated by a sustained increase in [Ca2-]i. Sustained [Ca2+]i elevation mediates many forms of programmed cell death in vertebrates. The Dictyostelium system may be the earliest example of how this mechanism developed during early eukaryote evolution.  相似文献   
8.
The plasma membrane located fusicoccin binding protein (FCBP) is an essential element in the fusicoccin (FC) signal transduction pathway. We obtained primary sequence information for the 31 kD subunit of the FCBP. These sequences showed that the FCBP is homologous to members of the 14-3-3 protein family. Both the 31 and 30 kD subunits cross-react with 14-3-3 antibodies. In native form the FCBP occurs as a dimer, but it is also part of a complex with higher molecular mass. The monomeric forms of the FCBP (the 30 and 31 kD subunits) do not have 3H-FC binding activity. We discuss how the FCBP, as a member of the 14-3-3 protein family, may be able to bind FC and how the FC-signal is transduced to the effector protein, the H+-ATPase.  相似文献   
9.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
10.
There is growing evidence to support some form of light-activated phosphoinositide signal transduction pathway in the mammalian retina. Although this pathway plays no obvious role in mammalian phototransduction, mutations in this pathway cause retinal degenerations in Drosophila. These include the retinal degeneration A mutant, which is caused by an alteration in an eye-specific diacylglycerol kinase (DAGK) gene. In our efforts to consider genes mutated in Drosophila as candidates for mammalian eye disease, we have initially determined the map position of three DAGK genes in the mouse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号