首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   18篇
  2020年   6篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   14篇
  2013年   22篇
  2012年   20篇
  2011年   13篇
  2010年   13篇
  2009年   15篇
  2008年   16篇
  2007年   23篇
  2006年   11篇
  2005年   14篇
  2004年   17篇
  2003年   17篇
  2002年   14篇
  2001年   17篇
  2000年   14篇
  1999年   8篇
  1998年   5篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1975年   5篇
  1974年   10篇
  1973年   5篇
  1972年   4篇
  1971年   5篇
  1970年   7篇
  1969年   10篇
  1968年   8篇
  1967年   8篇
  1966年   7篇
  1948年   3篇
  1930年   2篇
排序方式: 共有484条查询结果,搜索用时 31 毫秒
1.
Ten Swiss albino ICR SPF female mice 110 days old (weight about 30 g) were exposed for 48 hours to a solution of plutonium-238 nitrate (spec. act. 5 MBq/1 m1, pH 2.7) injected in amounts of 0.01 ml into the popliteal area of the right femur, each thus receiving about 500 kBq per 30 g body weight. Of the injected activity, 50% was retained in the right femur, 2% in the left femur and approximately 2-3% in the excrements collected separately from each animal during the whole exposure period. Ultrastructurally, electron micrographs revealed a variety of changes, including hypertrophy and destruction of endosteal cell organelles (primary damage), deformation and hypertrophy of osteocytes (secondary damage) and the irregularities in the osteocyte self-burial process leading to an abnormal formation of bone tissue structure (tertiary damage). Qualitatively, these changes in the irradiated bone ultrastructure were analogous to those occurring with age. This was confirmed by comparing two groups of control mice 110 and 330 days old. Assessed quantitatively, changes due to irradiation were more pronounced than those associated with aging.  相似文献   
2.
Litter decomposition is a major driver of carbon (C) and nitrogen (N) cycles in forest ecosystems and has major implications for C sequestration and nutrient availability. However, empirical information regarding long-term decomposition rates of foliage and wood remains rare. In this study, we assessed long-term C and N dynamics (12–13 years) during decomposition of foliage and wood for three boreal tree species, under a range of harvesting intensities and slash treatments. We used model selection based on the second-order Akaike’s Information Criterion to determine which decomposition model had the most support. The double-exponential model provided a good fit to C mass loss for foliage of trembling aspen, white spruce, and balsam fir, as well as aspen wood. These litters underwent a rapid initial phase of leaching and mineralisation, followed by a slow decomposition. In contrast, for spruce and fir wood, the single-exponential model had the most support. The long-term average decay rate of wood was faster than that of foliage for aspen, but not of conifers. However, we found no evidence that fir and spruce wood decomposed at slower rates than the recalcitrant fraction of their foliage. The critical C:N ratios, at which net N mineralisation began, were higher for wood than for foliage. Long-term decay rates following clear-cutting were either similar or faster than those observed in control stands, depending on litter material, tree species, and slash treatment. The critical C:N ratios were reached later and decreased for all conifer litters following stem-only clear-cutting, indicating increased N retention in harvested sites with high slash loads. Partial harvesting had weak effects on C and N dynamics of decaying litters. A comprehensive understanding of the long-term patterns and controls of C and N dynamics following forest disturbance would improve our ability to forecast the implications of forest harvesting for C sequestration and nutrient availability.  相似文献   
3.
The localization of alcohol dehydrogenase (ADH) in brain regions would demonstrate active ethanol metabolism in brain during alcohol consumption, which would be a new basis to explain the effects of ethanol in the central nervous system. Tissue sections from several regions of adult rat brain were examined by in situ hybridization to detect the expression of genes encoding ADH1 and ADH4, enzymes highly active with ethanol and retinol. ADH1 mRNA was found in the granular and Purkinje cell layers of cerebellum, in the pyramidal and granule cells of the hippocampal formation and in some cell types of cerebral cortex. ADH4 expression was detected in the Purkinje cells, in the pyramidal and granule cells of the hippocampal formation and in the pyramidal cells of cerebral cortex. High levels of ADH1 and ADH4 mRNAs were detected in the CNS epithelial and vascular tissues: leptomeninges, choroid plexus, ependymocytes of ventricle walls, and endothelium of brain vessels. Histochemical methods detected ADH activity in rodent cerebellar slices, while Western-blot analysis showed ADH4 protein in homogenates from several brain regions. In consequence, small but significant levels of ethanol metabolism can take place in distinct areas of the CNS following alcohol consumption, which could be related to brain damage caused by a local accumulation of acetaldehyde. Moreover, the involvement of ADH in the synthesis of retinoic acid suggests a role for the enzyme in the regulation of adult brain functions. The impairment of retinol oxidation by competitive inhibition of ADH in the presence of ethanol may be an additional origin of CNS abnormalities caused by ethanol.  相似文献   
4.
5.
Purified plasma membrane vesicles were isolated in the presence of 250 mM sucrose from 7-day-old roots of Triticum aestivum L. cv. Drabant by aqueous polymer two-phase partitioning. When added to a low-salt medium containing 9-aminoacridine (9-AA), the vesicles caused a much larger total decrease in 9-AA fluorescence when sucrose was absent than when sucrose was present. A slow component of the decrease was also larger in the absence of sucrose. Triton X-100 reduced the decrease in 9-AA fluorescence upon vesicle addition and abolished completely the slow component of the decrease. There was no correlation between the time-dependence of 9-AA fluorescence and that of the Mg2+-ATPase described below. The time course of Mg2+-ATPase activity was followed by sampling at short intervals (down to 10 s) and analyzing for P, released. In the absence of detergent, the rates of P, release were linear from zero minutes, whether 250 mM sucrose was present or not, but the rate was 10?50% higher in the absence of sucrose than in its presence. Sucrose (250 mM) added during a minus-sucrose assay lowered Mg2+-ATPase activity within 2 min to the level observed with 250 mM sucrose present from the start. The effect of 25-1 100 mM sucrose was tested and there was little or no effect below KM) mM. Above 100 mM sucrose the rate of P, release decreased drastically; at 1 100 mM sucrose the rate was ca 20% the rate at 25 mM sucrose. The inhibitory effect of sucrose was not alleviated by increased concentrations of Mg2+ and/or ATP. nor was it affected by the presence or absence of Triton X-100. We conclude that sucrose somehow inhibits the Mg2+-ATPase directly or affects the conformation of the plasma membrane in such a way as to inhibit the enzyme. The presence of detergents increased Mg2+-ATPase activity in the order Triton X-100 (4–5-fold) > Zwittergent 3–14 = Na-cholate = octylglucoside > digitonin (2-fold). In all cases optimal activity was observed at detergent concentrations at or below the critical micellar concentration. The detergent concentration curves could be simulated by the sum of a stimulatory and an inhibitory reaction. At the optimal concentration, digitonin gave a linear time-course of P, release, whereas all the other detergents showed a distinct lag of 1–3 min before maximal rates were attained. The problems of using detergents in polarity assays are discussed.  相似文献   
6.
7.
8.
Mineral uptake by winter wheat (Trilicum aestivum L. cv. Martonvasari 8) was studied throughout the life cycle. Accumulation of macronutrients (i.e. total nitrogen, phosphorus, potassium, sodium, magnesium and calcium) and the water content of roots and shoots of plants grown in complete nutrient solution were higher than those of plants grown in two types of soils. The supply of macronutrients was in some cases limiting for soil-grown plants as revealed by a comparison of available and accumulated amounts of these nutrients. Their supply was abundant, however, for solution-grown plants. This led to a doubling of grain yield for the latter plants with a three fold increase in accumulation of dry matter and a five-fold increase in fresh weight. The efficiency ratios of solution-grown plants to soil-grown plants were approximately 1 for N and Na, 0.5 for Mg and Ca, and 0.3 for P and K.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号