首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1985年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
2.
The effect of cadmium on the biosynthesis of chlorophyll has been investigated in the leaves of dark-grown seedlings of barley ( Hordeum vulture L. cv. Proctor). Cd2+ inhibited the production of chlorophyll by affecting 1) the synthesis of 5-aminolacvulinic acid and 2) the protoehlorophyllide reductase ternary complex with its substrates. Cd2+ had no effect on the constituent enzymes that catalyse the synthesis of free protoehlorophyllide from 5-aminolaevulinic acid. The results obtained are consistent with Cd2+ inhibiting the formation of chlorophyll by reacting with essential thiol groups in both the protochlorophyllide reductase protein and the enzyme(s) involved in the light dependent synthesis of 5-aminolaevulinic acid.  相似文献   
3.
4.
The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations.  相似文献   
5.
OBJECTIVE: To assess the utility of fine needle aspiration cytology (FNAC) and touch imprint cytology (TIC) in the evaluation of azoospermia. STUDY DESIGN: FNAC, TIC and open testicular biopsy (OTB) were used to evaluate 31 azoospermic men. RESULTS: OTB revealed normal spermatogenesis (10), spermatogenic arrest (12), Sertoli cell only syndrome (SCO) (7) and unsatisfactory cases (2). Cytologic examinations (TIC vs. FNAC) revealed normal spermatogenesis (11 vs. 9), spermatogenic arrest (13 vs. 7), SCO (2 vs. 1) and unsatisfactory cases (5 vs. 5). Sensitivity and specificity of TIC and FNAC were 98% vs. 83% and 100% vs. 93%, respectively. CONCLUSION: Testicular FNAC is a reliable and simple method for the evaluation of azoospermia.  相似文献   
6.
Five cyanobacterial species (Phormidium sp., Nostoc sp., Anabaena sp. Aphanothece conferta, and Synechocystis aquatilis) isolated from the Suez Canal coast at the city of Ismailia (Egypt) were tested for biodegradation of four hydrocarbon (HC) compounds: two aliphatic compounds (n‐octadecane and pristine) and two aromatic compounds (phenanthrene and dibenzothiophene). High degradation efficiencies for the two aliphatic compounds were measured for A. conferta (64% for n‐octadecane and 78% for pristine) and S. aquatilis (85% for n‐octadecane and 90% for pristane). However, the other biodegradation percentages ranged between weak and moderate percentages.  相似文献   
7.
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.  相似文献   
8.
Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.  相似文献   
9.

Key message

Linkage disequilibrium decay in sugar beet is strongly affected by the breeding history, and varies extensively between and along chromosomes, allowing identification of known and unknown signatures of selection.

Abstract

Genetic diversity and linkage disequilibrium (LD) patterns were investigated in 233 elite sugar beet breeding lines and 91 wild beet accessions, using 454 single nucleotide polymorphisms (SNPs) and 418 SNPs, respectively. Principal coordinate analysis suggested the existence of three groups of germplasm, corresponding to the wild beets, the seed parent and the pollen parent breeding pool. LD was investigated in each of these groups, with and without correction for genetic relatedness. Without correction for genetic relatedness, in the pollen as well as the seed parent pool, LD persisted beyond 50 centiMorgan (cM) on four (2, 3, 4 and 5) and three chromosomes (2, 4 and 6), respectively; after correction for genetic relatedness, LD decayed after <6 cM on all chromosomes in both pools. In the wild beet accessions, there was a strong LD decay: on average LD disappeared after 1 cM when LD was calculated with a correction for genetic relatedness. Persistence of LD was not only observed between distant SNPs on the same chromosome, but also between SNPs on different chromosomes. Regions on chromosomes 3 and 4 that harbor disease resistance and monogermy loci showed strong genetic differentiation between the pollen and seed parent pools. Other regions, on chromosomes 8 and 9, for which no a priori information was available with respect to their contribution to the phenotype, still contributed to clustering of lines in the elite breeding material.  相似文献   
10.
The role of the sucrose transporter OsSUT1 in assimilate retrieval via the xylem, as a result of damage to and leakage from punctured phloem was examined after rusty plum aphid (Hysteroneura setariae, Thomas) infestation on leaves from 3‐week‐old rice (Oryza sativa L. cv Nipponbare) plants. Leaves were examined over a 1‐ to 10‐day infestation time course, using a combination of gene expression and β‐glucuronidase (GUS) reporter gene analyses. qPCR and Western blot analyses revealed differential expression of OsSUT1 during aphid infestation. Wide‐field fluorescence microscopy was used to confirm the expression of OsSUT1‐promoter::GUS reporter gene in vascular parenchyma associated with xylem elements, as well as in companion cells associated with phloem sieve tubes of large, intermediate and small vascular bundles within the leaf blade, in regions where the aphids had settled and were feeding. Of great interest was up‐regulation of OsSUT1 expression associated with the xylem parenchyma cells, abutting the metaxylem vessels, which confirmed that OsSUT1 was not only involved in loading of sugars into the phloem under normal physiological conditions, but was apparently involved in the retrieval of sucrose leaked into the xylem conduits, which occurred as a direct result of aphid feeding, probing and puncturing of vascular bundles. The up‐regulation of OsSUT1 in xylem vascular parenchyma thus provides evidence in support of the location within the xylem parenchyma cells of an efficient mechanism to ensure sucrose recovery after loss to the apoplast (xylem) after aphid‐related feeding damage and its transfer back to the symplast (phloem) in O. sativa leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号