排序方式: 共有15条查询结果,搜索用时 0 毫秒
1.
Sheng Lin;Bang Zhang;Qiang Li;Xue-wen Li;Qi-tang Guo;Wen-le Chen;Hui-yu Jiao;Komivi Senyo Akutse;Xiang-zhen Zhu; 《Journal of Applied Entomology》2024,148(4):434-446
To understand the effect of diet on gut bacteria of Cnaphalocrocis medinalis (rice leaf folder, RLF), we compared the composition and diversity of gut bacterial community in C. medinalis larvae collected from three different rice variety fields of Minghui 82 (RLF1), Youngyong 15 (RLF2) and Minghui 2155 (RLF3), using culture-independent PCR (V3 variable region)-denaturing gradient gel electrophoresis (PCR-DGGE) methods and hypervariable region (V4) of 16S rRNA sequenced by Illumina HiSeq platform. The DGGE result showed that the bacteria genera Asaia, Bacillus, Stenotrophomonas, Achromobacter and Serratia coexisted in the guts of RLF1, RLF2 and RLF3, while Cedecea, Burkholderia and Acinetobacter coexisted in the guts of RLF2 and RLF3. However, only the genus Enterococcus existed in the guts of RLF1, and Pantoea, Wolbachia and Tumebacillus in RLF3 larvae. A total of 25 bacterial phyla, 48 classes, 127 orders, 223 families, and 406 genera were identified when using 16s RNA sequencing, with 35 genera coexisted in RLF1, RLF2 and RLF3 larval guts, while 83, 36, 141 unique genera existed in RLF1, RLF2 and RLF3, respectively. The indices of ACE and Shannon were not significantly different among RLF1, RLF2 and RLF3. The dominant bacterial taxa were Proteobacteria, Bacteroidetes and Firmicutes at the phylum level, and Acinetobacter and Wolbachia at the genus level. The relative genus abundance for the genera with relative abundance (≥0.01) was significantly different among RLF1, RLF2 and RLF3. The findings indicated that different rice varieties had significant effects on the relative abundance of gut bacteria in RLF, which could provide new insights into the relationship between insect gut bacteria and their associated host plants. 相似文献
2.
S. T. O. Othim R. Kahuthia‐Gathu K. S. Akutse C. N. Foba K. K. M. Fiaboe 《Journal of Applied Entomology》2018,142(7):637-645
Lepidopteran defoliators are the most important pests of cultivated amaranths causing severe losses in cultivated fields worldwide. Leaf‐webbers, whose larvae fold, web or glue amaranth leaves using their silken webs as they feed and leaf‐worms which cause windowing but do not glue or fold leaves are mainly reported. Sustainable management strategies for these pests are still lacking given the adverse effects of synthetic pesticides. Field experiments were conducted during two seasons at two different sites in Central Kenya, to assess amaranth lepidopteran pests and their natural enemies’ population dynamics, evaluate the efficacy of phenylacetaldehyde (PAA) floral lure as attractant and the effects of three amaranth lines (Abuk1, Abuk2 and Abuk8) on the pests’ abundance and damage. Abundance of leaf‐webbers (p = .537), leaf‐worms (p = 1) and their associated parasitoids (p = .083) did not differ between the dry and wet seasons. The parasitoids Atropha tricolor and Apanteles sp. caused parasitism of 6.2% and 33.3% on Spoladea recurvalis and Choristoneura sp., respectively. PAA incorporated traps attracted moths that were largely unrelated to the damaging larvae observed on the crops with only 0.5% of total trap catches being S. recurvalis. Sub‐sites in which PAA were incorporated had significantly higher number of leaf‐webber larvae on the crops compared to control sub‐sites (p = .014). Amaranth lines studied had significant (p = .007) effect on lepidopteran defoliators’ abundance and damage, with fewer leaf‐webbers and lower severity of damage recorded on Abuk2 compared to Abuk8. The implication of these findings for the control of lepidopteran defoliators in East Africa is discussed. 相似文献
3.
Inusa Jacob Ajene Fathiya Mbarak Khamis Barbara van Asch Gerhard Pietersen Nurhussen Seid Anne Wambui Wairimu Fidelis Levi Ombura Komivi Senyo Akutse Mamoudou Stamou Sevgan Subramanian Samira Mohammed Sunday Ekesi 《Ecology and evolution》2022,12(7)
The Asian citrus psyllid (Diaphorina citri Kuwayama) is a key pest of Citrus sp. worldwide, as it acts as a vector for Candidatus Liberibacter asiaticus, the bacterial pathogen that causes citrus Huanglongbing. Diaphorina citri has been reported in Kenya, Tanzania, and more recently in Ethiopia. This study assessed the genetic diversity and phylogeographic structure of the pest to gain insights into the potential sources of its introduction into Africa. Population structure and differentiation of D. citri populations from China, Ethiopia, Kenya, Tanzania, and the USA were assessed using 10 microsatellite loci. Additionally, five new complete mitogenomes of D. citri collected in China, Ethiopia, Kenya, Tanzania, and the USA were analyzed in the context of publicly available sequences. Genotype data grouped the D. citri populations from Kenya and Tanzania in one cluster, and those from Ethiopia formed a separate cluster. The two genetic clusters inferred from genotype data were congruent with mitochondrial sequence data. The mitogenomes from Kenya/Tanzania/China had 99.0% similarity, and the Ethiopia/USA had 99.9% similarity. In conclusion, D. citri populations in eastern Africa have different sources, as the Kenyan and Tanzanian populations probably originated from southeastern Asia, while the Ethiopian population most probably originated from the Americas. 相似文献
4.
Helen Msigo Heya Fathiya Mbarak Khamis Gladys Kemunto Onyambu Komivi Senyo Akutse Samira Abuelgasim Mohamed Emily Kajuju Kimathi Fidelis Levi Odhiambo Ombura Sunday Ekesi Thomas Dubois Sevgan Subramanian Chrysantus Mbi Tanga 《Journal of Applied Entomology》2020,144(6):442-458
The present study was conducted to characterize the newly invasive papaya mealybug Paracoccus marginatus Williams and Granara de Willink in Kenya using molecular techniques and to establish the potential risk of spread of the pest. Although abundant literature of P. marginatus outbreaks exists in other parts of the world, studies from Africa are rare. Our results revealed significant similarity between Kenyan samples with GenBank accession number KP692333.1 of P. marginatus. Phylogenetic analyses generated a tree that was paraphyletic with two clusters showing low genetic distance values for the P. marginatus sequences, which diverged from that of Planococcus citri. Our models displayed an optimal performance with mean area under the curve value of 0.82 and 0.98 for Genetic Algorithm for Rule-Set Production (GARP) and maximum entropy modelling (MaxEnt), respectively. Isothermality was the most influential variable in determining the potential distribution of P. marginatus with a 69% contribution to the models. Other variables included temperature mean diurnal range temperature seasonality, temperature annual range and annual precipitation in decreasing order of contribution. Current prediction by both models exceeded the existing range of P. marginatus, exacerbating the potential threat of the pest. GARP was more conservative in predicting suitable areas for P. marginatus, while MaxEnt showed further expansion by the year 2050. Our findings provide important information to guide biosecurity agencies in decision-making to prevent the spread and enhance control efforts of P. marginatus. 相似文献
5.
Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities
下载免费PDF全文

Mubasher Hussain Komivi Senyo Akutse Keppanan Ravindran Yongwen Lin Bamisope Steve Bamisile Muhammad Qasim Chandra Kanta Dash Liande Wang 《Environmental microbiology》2017,19(9):3439-3449
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field‐collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3–5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host‐symbionts interactions between D. citri and its associated endosymbionts. 相似文献
6.
Ten fungal isolates belonging to the genera Beauveria (3), Hypocrea (1), Gibberella (1), Metarhizium (2), Trichoderma (1) and Fusarium (2) were evaluated in the laboratory to determine whether they could become endophytic in two pea leafminer (Liriomyza huidobrensis) host plants (Vicia faba and Phaseolus vulgaris), and to assess their possible negative effects on leafminers. Beauveria (ICIPE279), Hypocrea, Gibberella, Fusarium and Trichoderma isolates colonized roots, stems and leaves of both host plant species. Beauveria isolates G1LU3 and S4SU1 colonized roots, stems, and leaves of P. vulgaris but only the root and stem of V. faba. Isolates of Metarhizium failed to colonize the two host plants. The effects of endophytically colonized fungal pathogens on mortality, oviposition, emergence and longevity of L. huidobrensis were investigated after endophytic colonization of V. faba plants. All the fungal isolates that succeeded in colonizing the host plant were pathogenic to L. huidobrensis, causing 100 % mortality within 13.2 ± 0.7–15.0 ± 0.6 d. However, Hypocrea outperformed the other isolates (p < 0.0 001) in reducing longevity of the progeny (11.2 ± 1.0 vs. 17.8 ± 1.4 d in the control), the number of pupae (80.0 ± 6.7 vs. 387.0 ± 21.7 pupae in the control), and adult longevity (3.8 ± 1.0 vs. 9.9 ± 1.8 d in the control). Adult emergence was significantly reduced (p < 0.0 001) in Hypocrea (21.4 %) and Beauveria (38.0 %) treatments compared to the control (82.9 %). 相似文献
7.
Komivi Senyo Akutse Jane Wanjiru Kimemia Sunday Ekesi Fathiya Mbarak Khamis Odhiambo Levi Ombura Sevgan Subramanian 《Journal of Applied Entomology》2019,143(6):626-634
Maize is a major staple food for over 300 million people in sub‐Saharan Africa. Sustainable productivity of this primary crop has been recently threatened by Fall armyworm (FAW), Spodoptera frugiperda invasion. Due to lack of environmentally safe management strategies, immediate responses by growers and governments to tackle FAW are based on rampant use of pesticides. Looking for efficient biopesticides, twenty entomopathogenic fungal isolates (14 Metarhizium anisopliae and 6 Beauveria bassiana) were screened for their efficacy against eggs and second instar larvae of FAW. A single discriminating concentration of 1 × 108 conidia ml?1 and four replicates per treatment were used in all experiments. Isolates were assessed for their ability to cause mortality of FAW second instar larvae, eggs and the neonate larvae that emerged from treated eggs. Among the isolates tested, only B. bassiana ICIPE 676 caused moderate mortality of 30% to second instar larvae. Metarhizium anisopliae ICIPE 78, ICIPE 40 and ICIPE 20 caused egg mortalities of 87.0%, 83.0% and 79.5%, respectively, and M. anisopliae ICIPE 41 and ICIPE 7 outperformed all the others by causing 96.5% and 93.7% mortality to the neonate larvae, respectively. The cumulated mortality of eggs and neonates was highest with M. anisopliae ICIPE 41 (97.5%), followed by M. anisopliae ICIPE 7, 655, 40, 20 and 78 with total mortality of 96.0%, 95.0%, 93.5%, 93.0% and 92.0%, respectively. These isolates with high cumulated mortality (≥92%), especially ICIPE 78 and 7, which are already commercialized for spider mites and ticks control respectively, would be good candidates for development as biopesticides for management of FAW in Africa if further evidence of their efficacy is obtained in the field. 相似文献
8.
9.
Komivi S. Akutse Komi K. M. Fiaboe Johnnie Van den Berg Sunday Ekesi Nguya K. Maniania 《PloS one》2014,9(10)
Effects of the fungal endophytes Beauveria bassiana (isolates ICIPE 279, G1LU3, S4SU1) and Hypocrea lixii (isolate F3ST1) on the life-history of Phaedrotoma scabriventris and Diglyphus isaea, parasitoids of the pea leafminer Liriomyza huidobrensis, were studied in the laboratory. Parasitoids were allowed to parasitize 2nd and 3rd instar L. huidobrensis larvae reared on endophytically-inoculated faba bean, Vicia faba. In the control, parasitoids were reared on non-inoculated host plants. Parasitism, pupation, adult emergence and survival were recorded. No significant difference was observed between the control and the endophyte-inoculated plants in terms of parasitism rates of P. scabriventris (p = 0.68) and D. isaea (p = 0.45) and adult'' survival times (p = 0.06). The survival period of the F1 progeny of P. scabriventris was reduced (p<0.0001) in B. bassiana S4SU1 to 28 days as compared to more than 40 days for B. bassiana G1LU3, ICIPE 279 and H. lixii F3ST1. However, no significant difference (p = 0.54) was observed in the survival times of the F1 progeny of D. isaea. This study has demonstrated that together, endophytes and parasitoids have beneficial effects in L. huidobrensis population suppression. 相似文献
10.
S. Opisa H. du Plessis K. S. Akutse K. K. M. Fiaboe S. Ekesi 《Journal of Applied Entomology》2018,142(6):617-626
Spoladea recurvalis (Fabricius) is one of the most devastating pests of amaranths causing severe yield losses of 60%–100% to the crop. Unfortunately use of chemical pesticides is the most common control strategy that vegetable farmers rely on to control the pest. However, it is not effective and harmful to environmental and human health. Aiming to provide more environmentally friendly alternatives, this study evaluated the effects of various entomopathogenic fungal isolates and commercial based Bacillus thuringiensis Subsp. kurstaki product Halt®, on the pest. Twenty‐four entomopathogenic fungal (EPF) isolates from three genera (14 Metarhizium anisopliae, 9 Beauveria bassiana and 1 lsaria fumosorosea) were screened in the laboratory to assess their pathogenicity against second instar larvae of S. recurvalis. Only M. anisopliae ICIPE 30 reached a moderate threshold, causing 58.3% larval mortality. All the 11 isolates (8 M. anisopliae, 2 B. bassiana and 1 l. fumosorosea) tested against adult S. recurvalis were pathogenic, with M. anisopliae ICIPE 30 and B. bassiana ICIPE 725 causing the highest mortality of 92% and 83%, respectively. Metarhizium anisopliae ICIPE 30 had the shortest LT50 value of 4.8 days. Bacillus thuringiensis Subsp. kurstaki product Halt® caused <50% mortality on S. recurvalis larvae. A consecutive application of M. anisopliae ICIPE 30 and Bt did not cause a significant increase in larval mortality compared to separate applications of both products. Results of this study suggest that M. anisopliae ICIPE 30 was the most potent candidate and could be used in an autodissemination approach for management of adult S. recurvalis. 相似文献