首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  107篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2010年   1篇
  2008年   1篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   9篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   2篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   5篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有107条查询结果,搜索用时 0 毫秒
1.
The effect of 800 mHz microwaves of 0, 3, 5, 7, 16, and 30 Hz modulation on GABA receptor concentration in rat brain cortex has been investigated. Irradiation of the whole body at a modulation frequency of 16 Hz readily decreases the GABA receptor concentration. Irradiation at other modulation frequencies is ineffective. Irradiation of the whole body modulated at 16 Hz with various exposure times (5, 15 and 60 min) has revealed the highest effect at 5 min, while at a longer exposure the effect decreases.  相似文献   
2.
Summary Dissected ampullae of Lorenzini of the skate (Raja clavata) were studied with the aim of determining the synaptic transmitter between electroreceptor cell and afferent fibre. Resting activity and stimulus-evoked activity in response to electrical pulses were recorded in single afferent units at constant perfusion with normal and test solutions containing different putative neurotransmitters. Presynaptic transmitter release was blocked by Mg2+ (up to 50 mM) to investigate the effects of the test substances upon the postsynaptic membrane. l-Glutamate (l-GLU) and l-aspartate (l-ASP), both at concentrations between 10-7 and 10-3 M, enlarged strongly resting and stimulus-evoked discharge frequency in the afferent fibre. If transmission was blocked by high Mg2+, resting discharge frequency could be restored by l-GLU or l-ASP. The glutamate agonists quisqualate (10-8–105 M) and N-methyl-D-aspartate (10-5–10-3 M) enlarged spontaneous activity in the afferent fiber. The same was found for kainic acid (10-9–10-5 M). Taurine at concentrations between 10-5 and 10-3 M caused a concentration-dependent decrease in afferent activity. The same was found for gammaaminobutyric acid (GABA; 10-5–10-4 M), and for the catecholamines adrenaline and noradrenaline, both in concentrations between 10-5 and 10-3 M. Serotonine (10-5–10-3 M) and dopamine (10-5-10-3 M) had no effect on resting or evoked activity in the Lorenzinian ampulla afferents. Acetylcholine (ACh; 10-4 M) enlarged discharge frequency in those units with initial rates lower than 22–25 Hz, but diminished discharge frequency in fibres with initial activity higher than 25 Hz. When synaptic transmission was blocked by high Mg2+ solution, perfusion with additional ACh did not restore resting activity in the afferent fibre. The results suggest that the most probable transmitter in the afferent synapse of the ampullae of Lorenzini is l-GLU or l-ASP, or a substance of similar nature.Abbreviations ACh acetylcholine - GABA gamma aminobutyric acid - KA kainic acid - l-ASP l-aspartate - l-GLU l-glutamate - NMDA N-methyl-D-aspartate - Q quisqualate - n.s. normal solution  相似文献   
3.
The effects of kainic acid on synaptic transmission in electroreceptors were investigated in the skate using techniques of uninterrupted superfusion of the synaptic area with a solution containing this substance and then recording the spike activity of single nerve fibers of the ampullae of Lorenzini. Kainic acid at threshold concentrations of the order of 10–9 M effectively changed spontaneous and evoked activity of the receptors. Level of background activity served as an indication of the effects taking place. During blockage of synaptic transmission produced by magnesium ions the addition of kainic acid to the magnesium-saturated solution restored both spontaneous and evoked activity. It was deduced that the action of kainic acid on skate electroreceptors is of a primarily presynaptic nature.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 147–153, March–April, 1986.  相似文献   
4.
Exponential survival curves were obtained for a dry film culture of bacteriophage T4 Br+ after exposure to both alpha-particles and gamma-quanta. Relative biological effectiveness of alpha-particles was 4.68 with respect to survival. The mutation spectrum after alpha-irradiation slightly differed from that produced by gamma-radiation.  相似文献   
5.
6.
7.
8.
ClpB from Escherichia coli is a member of a protein-disaggregating multi-chaperone system that also includes DnaK, DnaJ, and GrpE. The sequence of ClpB contains two ATP-binding domains that are enclosed between the amino-terminal and carboxyl-terminal regions. The N-terminal sequence region does not contain known functional sequence motifs. Here, we performed site-directed mutagenesis of four polar residues within the N-terminal domain of ClpB (Thr7, Ser84, Asp103 and Glu109). These residues are conserved in several ClpB homologs. We found that the mutations, T7A, S84A, D103A, and E109A did not significantly affect the secondary structure and thermal stability of ClpB, nor did they inhibit the self-association of ClpB, its basal ATPase activity, or the enhanced rate of the ATP hydrolysis by ClpB in the presence of poly-L-lysine. We observed, however, that three mutations, T7A, D103A, and E109A, reduced the casein-induced activation of the ClpB ATPase. The same three mutant ClpB variants also showed low chaperone activity in the luciferase reactivation assay. We found, however, that the four ClpB mutants, as well as the wild-type, bound similar amounts of inactivated luciferase. In summary, we have identified three essential amino acid residues within the N-terminal region of ClpB that participate in the coupling between a protein-binding signal and the ATP hydrolysis, and also support the chaperone activity of ClpB.  相似文献   
9.
The effects of quisqualic acid (QA), N-methyl-D-aspartate (NMDA), and a number of NMDA and non-NMDA receptor antagonists on background and induced activity in afferent nerve fibers were investigated in skates by means of bath application to the basal membrane of electroreceptors (ampullae of Lorenzini). Perfusion with physiological saline containing QA or NMDA (minimum concentrations required: 10–8 and 10–5 M respectively) was found to exert an excitatory effect on afferent activity. Aminoadipate and aminophosphonobutyrate had no effect on synaptic transmission, which was blocked by aminophosphonovalerate, however. Raising magnesium ion concentration (of 30 mM) led to blockade of NMDA-induced response without changing that produced by QA. Aminophosphonovalerate blocked NMDA response and partially reduced the effects of L-aspartic acid. Glutamyl glycine produced blockade of synaptic transmission. The findings obtained would point to synaptic sensitivity to the action of amino acid agonists (QA and NMDA) in the ampullae of Lorenzini.Neurocybernetics Research Institute, Rostov-on-Don. Translated from Neirofiziologiya, Vol. 21, No. 2, pp. 160–167, March–April, 1989.  相似文献   
10.
The dependence of activities of actomyosin ATPase, alkaline phosphatase, aspartataminotranspherase, monoaminoxidase and that of affective rat behavior on frequency of modulation of microwaves (0.8-10 microW/cm2) was explored at short-time actions. Series of nonlinear phenomenons, inexplicable from positions of the energy approaches are revealed, The working hypothesis explaining opportunity of high performance of weak and super-weak microwaves and other revealed phenomena by resonance interaction of such electromagnetic radiofrequency radiation with paramagnetic molecules of biological tissues was proposed. This resonance interaction activate free radicals and initiate auto-supporting and auto-intensifying of chain chemical reactions. The spontaneous autocatalytic oxidation of catecholamines enlarges a common pool of free radicals, capable to participate in such enhanced generating. The protective role of monoaminoxidase is postulated. Monoaminoxidase is basically located on an outer surface of mitochondrias and it is deaminating monoamines. The deaminating prevents penetration of catecholamines inside of mitochondrias and their quinoid oxidation there with formation of free-radical semi-quinons, capable to destroy system of ATP synthesis. These inferences are obliquely confirmed by the experimentally revealed correlation between activity of monoaminoxidase and integrative activity of the rat brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号