首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   20篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   8篇
  2012年   9篇
  2011年   12篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
1.
The distribution and stability of the cellular tumor antigen p53 were studied in baby rat kidney cells transformed by region E1 sequences of nononcogenic adenovirus (Ad) type 5 (Ad5) or oncogenic type 12 (Ad12). In transformed cells expressing the large E1B T antigen of Ad5, p53 was associated with this T antigen. The complexed proteins were concentrated in a cytoplasmic body, which has been shown to consist of a cluster of 8-nm filaments (A. Zantema et al., Virology 142:44-58, 1985). In transformed cells expressing the E1B region of Ad12, however, no association between the viral large T antigen and p53 was detectable. In the latter case, both proteins were found almost exclusively in the nucleus. The stability of p53 in both Ad5- and Ad12-transformed cells was increased relative to that in primary cells or cells immortalized by the E1A region only. Thus, the increased stability of p53 in Ad-transformed cells is not caused by association with a viral T antigen, but it correlates with expression of E1B and with morphological transformation.  相似文献   
2.
Subcutaneous (s.c.) immunization of mice with allogeneic spleen cells can induce delayed-type hypersensitivity (DTH) to both major and minor histocompatibility antigens. Intravenous immunization with allogeneic spleen cells, however, induces a poor state of DTH. Furthermore, i.v. immunization with allogeneic spleen cells, especially if they have been irradiated, induces suppressor T lymphocytes. These suppressor T cells are capable of suppressing the host-vs-graft (HvG) DTH reactivity that normally arises after s.c. immunization. Moreover, they can suppress the development of anti-host DTH effector T cells during graft-vs-host (GvH) reactions. These models for HvG and GvH DTH reactivity were used to study the influence of 2'-deoxyguanosine (dGuo) and guanosine (Guo) on the generation of DTH-reactive T cells and suppressor T cells in vivo. It was found that daily i.p. administration of 0.01 mg dGuo to mice immunized i.v. partially prevented the generation of suppressor T cell activity, whereas daily administration of 0.1 or 1 mg dGuo resulted in a complete abolition. Administration of dGuo has no effect on the anti-host DTH reactivity by spleen cells from nonsuppressed donors except for when a daily dose of 10 mg is administered. This dose proved to be toxic for precursors of DTH effector T cells. Daily i.p. injection of Guo had no effect on the generation of suppressor T cells nor on the generation of DTH effector T cells. The effect of dGuo was found to be due to a direct effect on suppressor T cells and not to the induction of contrasuppressor cells. These data suggest a differential sensitivity of DTH-reactive T cells and suppressor T cells for dGuo. Because suppressor T cells and DTH-reactive T cells require proliferation for expressing maximal functional activity in the systems used, both cell types probably have different enzyme activities involved in the purine metabolism and similar deoxycytidine kinase activities, but have different nucleotidase (5'NT) activities, those in suppressor T cells being the lowest. If so, suppressor T cells will accumulate deoxyguanosine triphosphate, which causes an inhibition of the ribonucleotide reductase activity and thus of the DNA synthesis by these cells.  相似文献   
3.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   
4.
Heat-labile enterotoxin (LT) is part of the cholera toxin (CT) family and consists of a catalytic A subunit and a B pentamer that serves to recognize the oligosaccharide part of the GM1 ganglioside receptor. We report here the crystal structure of heat-labile enterotoxin in complex with the disaccharide portion of the Thomsen-Friedenreich (T-antigen) tumor marker. The toxin:carbohydrate complex is determined to 2.13 A resolution, yielding an R-factor of 18.5%. The T-antigen disaccharide, D-Gal-beta 1,3-GalNAc-Ser/Thr, is present in more than 85% of human carcinomas and monitoring its autoimmune response is used for the early detection of tumors. Insight into the molecular recognition of this tumor antigen by sugar binding proteins can benefit the development of a diagnostic tool for human carcinomas as well as a T-antigen directed anticancer drug delivery system.  相似文献   
5.
Two closely related bacterial toxins, heat-labile enterotoxin (LT-I) and cholera toxin (CT), not only invoke a toxic activity that affects many victims worldwide but also contain a beneficial mucosal adjuvant activity that significantly enhances the potency of vaccines in general. For the purpose of vaccine design it is most interesting that the undesirable toxic activity of these toxins can be eliminated by the single-site mutation Ser63Lys in the A subunit while the mucosal adjuvant activity is still present. The crystal structure of the Ser63Lys mutant of LT-I is determined at 2.0 A resolution. Its structure appears to be essentially the same as the wild-type LT-I structure. The substitution Ser63Lys was designed, based on the wild-type LT-I crystal structure, to decrease toxicity by interfering with NAD binding and/or catalysis. In the mutant crystal structure, the newly introduced lysine side chain is indeed positioned such that it could potentially obstruct the productive binding mode of the substrate NAD while at the same time its positive charge could possibly interfere with the critical function of nearby charged groups in the active site of LT-I. The fact that the Ser63Lys mutant of LT-I does not disrupt the wild-type LT-I structure makes the non-toxic mutant potentially suitable, from a structural point of view, to be used as a vaccine to prevent enterotoxigenic E. coli infections. The structural similarity of mutant and wild-type toxin might also be the reason why the inactive Ser63Lys variant retains its adjuvant activity.  相似文献   
6.

Background  

The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user.  相似文献   
7.
8.
H2S+ bacteria responsible for the degradation of sulfur-containing amino acids of fish muscle are currently little used to evaluate the microbiological pal quality of fish. Shewanella putrefaciens greatly predominates in this flora, and was therefore used to define a suitable culture method and medium. Inoculations by the Spiral surface method at 25C, with an incubation of 72h, gave the best counts on a medium containing two sources of sulfur (organic and inorganic) for H2S+ bacteria. The culture medium and the NaCl concentration were determinant in the evaluation of this flora. At present there is no standard medium which meets these requirements.  相似文献   
9.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   
10.
Pseudoexons occur frequently in the human genome. This paper characterizes a pseudoexon in the GH receptor gene. Inappropriate activation of this pseudoexon causes Laron syndrome. Using in vitro splicing assays, pseudoexon silencing was shown to require a combination of a weak 5' pseudosplice-site and splicing silencing elements within the pseudoexon. Immunoprecipitation experiments showed that specific binding of heterogenous nuclear ribonucleoprotein E1 (hnRNP E1) and U1 small nuclear ribonucleoprotein (snRNP) in the pre-spliceosomal complex was associated with silencing of pseudoexon splicing. The possible role of hnRNP E1 was further supported by RNA interference experiments in cultured cells. Immunoprecipitation experiments with three other pseudoexons suggested that pre-spliceosomal binding of U1 snRNP is a potential general mechanism of suppression of pseudoexons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号