首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   730篇
  免费   53篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   12篇
  2020年   7篇
  2019年   11篇
  2018年   13篇
  2017年   13篇
  2016年   14篇
  2015年   37篇
  2014年   27篇
  2013年   36篇
  2012年   65篇
  2011年   62篇
  2010年   32篇
  2009年   28篇
  2008年   49篇
  2007年   38篇
  2006年   44篇
  2005年   51篇
  2004年   23篇
  2003年   50篇
  2002年   31篇
  2001年   15篇
  2000年   7篇
  1999年   15篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1971年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
1.
2.
The c-mos proto-oncogene product, Mos, functions in both early (germinal vesicle breakdown) and late (metaphase II arrest) steps during meiotic maturation in Xenopus oocytes. In the early step, Mos is only partially phosphorylated and metabolically unstable, while in the late step it is fully phosphorylated and highly stable. Using a number of Mos mutants expressed in oocytes, we show here that the instability of Mos in the early step is determined primarily by its penultimate N-terminal residue, or by a rule referred to here as the 'second-codon rule'. We demonstrate that unstable Mos is degraded by the ubiquitin-dependent pathway. In the late step, on the other hand, Mos is stabilized by autophosphorylation at Ser3, which probably acts to prevent the N-terminus of Mos from being recognized by a ubiquitin-protein ligase. Moreover, we show that Ser3 phosphorylation is essential for Mos to exert its full cytostatic factor (CSF) activity in fully mature oocytes. Thus, a few N-terminal amino acids are primary determinants of both the metabolic stability and physiological activity of Mos during the meiotic cell cycle.  相似文献   
3.
The biosynthesis and proteolytic processing of lysosomal cathepsin L was studied using in vitro translation system and in vivo pulse-chase analysis with [35S]methionine and [32P]phosphate in primary cultures of rat hepatocytes. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of a primary translation product of an immunoprecipitable 37.5-kDa cathepsin L in vitro. The 37.5-kDa form was converted to the 39-kDa form when translated in the presence of dog pancreas microsomes. During pulse-chase experiments with [35S]methionine in cultured rat hepatocytes, cathepsin L was first synthesized as a 39-kDa protein, presumably the proform, after a short time of labeling, and was subsequently processed into the mature forms of 30 and 25 kDa in the cell. On the other hand, considerable amounts of the proenzyme were found to be secreted into the culture medium without further proteolytic processing during the chase. The precursor and mature enzymes were N-glycosylated with high-mannose-type oligosaccharides, and the proenzyme molecule contained phosphorylated oligosaccharides. The effects of tunicamycin and chloroquine were also investigated. In the presence of tunicamycin, a 36-kDa unglycosylated polypeptide appeared in the cell and this protein was exclusively secreted from the cells without undergoing proteolytic processing. These results suggest that cathepsin L is initially synthesized on membrane-bound polysomes as a 37.5-kDa prepropeptide and that the cotranslational cleavage of the 1.5-kDa signal peptide and the core glycosylation convert the precursor to the 39-kDa proform, which is subsequently processed to the mature form during biosynthesis. Thus, the biosynthesis and secretion of lysosomal cathepsin L in rat hepatocytes seem to be analogous to those of the major excreted protein of transformed mouse fibroblasts [S. Gal, M. C. Willingham, and M. M. Gottesman (1985) J. Cell Biol. 100, 535-544] and the mouse cysteine proteinase of activated macrophages [D.A. Portnoy, A. H. Erickson, J. Kochan, J. V. Ravetch, and J. C. Unkeless (1986) J. Biol. Chem. 261, 14697-14703].  相似文献   
4.
The oxidation-reduction reactions and structural characteristics of phosvitin-bound cytochrome c were examined at various ratios of cytochrome c to phosvitin. At binding ratios below half the maximum, the rate constants for the oxidation reactions with cytochrome c oxidase and ferricyanide and the rate constants for the reduction reactions with cytochrome b2 and ascorbate were low, but at higher ratios these rate constants gradually increased to that of free cytochrome c and, in particular, the rate constant for oxidation by cytochrome c oxidase was raised to two to three times that of the free form. This binding-ratio dependence of the rate constants for the oxidation and reduction reactions was different from that of the net charge of the cytochrome c-phosvitin complex, implying that the negative charges of phosvitin are unlikely to modulate the rates. In contrast, the broadening of the NMR signals for the heme and methionine-80 methyl groups and the conformational transition in the vicinity of the heme moiety on change from the native to the cyanide-bound or urea-denatured form of cytochrome c showed a similar binding-ratio dependence to the rate constants for the oxidation and reduction reactions. Since the conformation and electronic structure in the heme environment of ferric and ferrous cytochromes c were not changed significantly by binding to phosvitin, and since the binding strength of cytochrome c to phosvitin at binding ratios below half the maximum is different from that at higher ratios, these findings suggest that a difference in the movement of cytochrome c in its complex with phosvitin may modulate its oxidation-reduction reactions.  相似文献   
5.
Covalent modification of glutathione reductase (GR) from yeast with 1-fluoro-2,4-dinitrobenzene (FDNB) inhibited the NADPH-GSSG reductase activity completely. This modification also decreased the NADPH-thio-NADP+ transhydrogenase activity, stimulated the NADPH-oxidase activity, and induced the NADPH-cytochrome c reductase activity. Spectrophotometric titration showed that one tyrosine residue per FAD was modified with a dinitrophenyl group. The modified enzyme showed conversion of the two-electron reduced form (EH2) to the four-electron reduced form (EH4) in anaerobic conditions and conversion of EH2 to the oxidized form (E) in aerobic conditions. These results indicate that the modification of one tyrosine residue of the active site induces the instability of EH2.  相似文献   
6.
Cytosolic and mitochondrial isozymes of aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase [EC 2.6.1.1] ) were purified to homogeneity from rabbit liver. The rabbit liver isozymes were closely similar to the corresponding isozymes from other sources, including human heart, pig heart, chicken heart, and rat liver, in their molecular weights, absorption spectra, amino acid compositions, isoelectric points, and Michaelis constants for the substrates. The NH2-terminal amino acid sequences of rabbit liver isozymes were identified up to 30 residues, and showed some differences from those of the corresponding isozymes obtained from other animals so far studied.  相似文献   
7.
8.
We examined the applicability of radiotelemetry to studies of acorn dispersal byApodemus mice and compared its efficiency with the of this spool-and-line method. Installation of a transmitter (2.2 g) onto acorns did not interfere with the transporting and feeding behavior of the mice. We were able to detect all transmitter-installed acorns and follow the daily changes in the sites in which they were hoarded, while we missed 59% of the spool-tied acorns due to mice breaking the threads. Mice carried transmitter-installed acorns farther than spool-tied ones. The radiotelemetry method is superior to the spool-and-line method and useful for the study of hoarding behavior in rodents.  相似文献   
9.
We have studied receptor-mediated calcium signals in antigen-specific B cells (trinitrophenol-specific B cell clone, TP67.21) using a confocal fluorescence microscope with an argon ion laser (488 nm) and a He-Cd laser (325 nm). Confocal fluorescence images of fluo-3 loaded B cells, excited by an argon ion laser, became much brighter and more nonhomogeneous than those before antigen stimulation. Time-dependent fluorescence changes in intensities were abrupt and quite similar to the patterns of the intracellular calcium ion concentration [Ca2+]i observed by a conventional fluorescence microscope using fura-2. From the morphological patterns of the calcium images, the parts of the bright fluorescence seemed to belong to the nucleus in B cells. To confirm the above events we measured the confocal fluorescence images of the nucleus. From the fluorescence images of co-loaded Hoechst 33342 (a DNA-specific fluorescent probe), which excited by a He-Cd laser, the brighter parts of the fluo-3 fluorescence intensities were identified to the nucleus in B cells. This suggested the possibility that the increased intranuclear calcium ions may play a nuclear third messenger in B cells.  相似文献   
10.
A method is described for the simultaneous determination of (+)- and (−)-homochlorcyclizine (HCZ) in human urine by high-performance liquid chromatography on a chiral stationary phase of ovomucoid-bonded silica. The pH of the buffer and organic modifier in the mobile phase markedly affected the chromatographic separation. A mobile phase of methanol—0.02 M acetate buffer (pH 4.7) (25:75, v/v) at a flow-rate of 1.0 ml/min was used for the urine assays. The ultraviolet absorption was monitored at 240 nm, and diphenhydramine was employed as the internal standard for the quantitation. (+)-HCZ, (−)-HCZ and the internal standard were eluted at retention times of 15, 25 and 8 min, respectively. The limit of determination for HCZ enantiomers was ca. 50 ng/ml of urine. One of the metabolites in human urine, which was a quaternary ammonium-linked glucuronide, could also be determined in a manner similar to unchanged HCZ after β-glucuronidase hydrolysis. A pharmacokinetic study was conducted with three healthy volunteers, who each received a single oral dose of racemic HCZ (20 mg). Distinct differences were found between the two enantiomers, particularly in the metabolic process, that is, the urinary excretion as (−)-HCZ-glucuronide within 48 h was ca. four times higher than that of the (+)-isomer. This method should be very useful for enantioselective pharmacokinetic studies of HCZ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号