首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   1篇
  2013年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Polymorphism of MHC and MHC-linked genes is tightly associated with susceptibility to type 1 diabetes (T1D) in human and animal models. Despite the extensive studies, however, the role of MHC and MHC-linked genes expressed by T cells on T1D susceptibility remains unclear. Because T cells develop from TCR(-) thymic precursor (pre-T) cells that undergo MHC restriction mediated by thymic stroma cells, we reconstituted the T cell compartment of NOD.scid-RIP-B7.1 mice using pre-T cells isolated from NOD, NOR, AKR, and C57BL/6 (B6) mice. T1D developed rapidly in the mice reconstituted with pre-T cells derived from NOD or NOR donors. In contrast, most of the NOD.scid-RIP-B7.1 mice reconstituted with pre-T cells from AKR or B6 donors were free of T1D. Further analysis revealed that genes within MHC locus of AKR or B6 origin reduced incidence of T1D in the reconstituted NOD.scid-RIP-B7.1 mice. The expression of MHC class I genes of k, but not b haplotype, in T cells conferred T1D resistance. Replacement of an interval near the distal end of the D region in T cells of B6 origin with an identical allele of 129.S6 origin resulted in T1D development in the reconstituted mice. These results provide evidence that the expression of MHC class I and MHC-linked genes in T cells of NOD mice indeed contributes to T1D susceptibility, while expression of specific resistance alleles of MHC or MHC-linked genes in T cells alone would effectively reduce or even prevent T1D.  相似文献   
2.
Mismatch Negativity (MMN) is an N-methyl-d-aspartic acid (NMDA)-mediated, negative deflection in human auditory evoked potentials in response to a cognitively discriminable change. MMN-like responses have been extensively investigated in animal models, but the existence of MMN equivalent is still controversial. In this study, we aimed to investigate how closely the putative MMN (MMNp) in rats exhibited the comparable properties of human MMN. We used a surface microelectrode array with a grid of 10×7 recording sites within an area of 4.5×3.0 mm to densely map evoked potentials in the auditory cortex of anesthetized rats under the oddball paradigm. Firstly, like human MMN, deviant stimuli elicited negative deflections in auditory evoked potentials following the positive middle-latency response, termed P1. Secondly, MMNp exhibited deviance-detecting property, which could not be explained by simple stimulus specific adaptation (SSA). Thirdly, this MMNp occurred focally in the auditory cortex, including both the core and belt regions, while P1 activation focus was obtained in the core region, indicating that both P1 and MMNp are generated in the auditory cortex, yet the sources of these signals do not completely overlap. Fourthly, MMNp significantly decreased after the application of AP5 (D-(-)-2-amino-5-phosphonopentanoic acid), an antagonist at NMDA receptors. In stark contrast, AP5 affected neither P1 amplitude nor SSA of P1. These results provide compelling evidence that the MMNp we have examined in rats is functionally comparable to human MMN. The present work will stimulate translational research into MMN, which may help bridge the gap between electroencephalography (EEG)/magnetoencephalography (MEG) studies in humans and electrophysiological studies in animals.  相似文献   
3.
A burst release of cytokines by Valpha14 invariant NKT (iNKT) cells upon their TCR engagement critically regulates innate and adaptive immune responses. However, it remains unclear in vivo why iNKT cells respond efficiently to microbial or intracellular lipid Ags that are at low levels or that possess suboptimal antigenicity. We found that dendritic cells (DCs) potentiated iNKT cells to respond to a minimal amount of ligand alpha-galactosylceramide (alphaGalCer) through CD1d-dependent autoreactive responses that require endosomal processing and CD1d trafficking. The ability of potentiation of NKT cells was DC specific and did not depend on costimulatory signals and IL-12 production by DCs. However, DCs that failed to synthesize a major endogenous lipid Ag isoglobotrihexosylceramide were unable to potentiate NKT cells for efficient activation. Further analysis showed that differences in the level and pattern of endogenous lipid Ag presentation differentiate DCs and B cells for effective potentiation and subsequent activation of iNKT cells in the presence of an exogenous Ag. Thus, CD1d-dependent potentiation by DCs may be crucial for iNKT cell-mediated immunity against infectious agents.  相似文献   
4.
Semi-invariant NK T cell (iNKT) deficiency has long been associated with the pathogenesis of type 1 diabetes (T1D), but the linkage between this the deficiency and T1D susceptibility gene(s) remains unclear. We analyzed NOD mice subcongenic for resistant alleles of Idd9 locus in search for protective mechanisms against T1D, and found that iNKT cell development was significantly enhanced with a more advanced mature phenotype and function in mice containing Idd9.1 sublocus of B10 origin. The enhanced iNKT cell development and function suppressed effector function of diabetogenic T cells. Elimination of iNKT cells by CD1d deficiency almost abolished T1D protection in these mice. Interestingly, although the iNKT cells were responsible for a Th2 orientated cytokine profile that is often regarded as a mechanism of T1D prevention, our data suggests that the Th2 bias played little if any role for the protection. In addition, dendritic cells from the congenic NOD mice showed increased abilities to engage and potentiate iNKT cells, suggesting that a mechanism mediated by dendritic cells or other APCs may be critical for the enhanced development and maturation of iNKT cells. The products of T1D susceptibility gene(s) in Idd9.1 locus may be a key factor for this mechanism.  相似文献   
5.
Stimulated by an agonistic ligand, alpha-galactosylceramide (alphaGalCer), invariant NKT (iNKT) cells are capable of both eliciting antitumor responses and suppressing autoimmunity, while they become anergic after an initial phase of activation. It is unknown how iNKT cells act as either activators or regulators in different settings of cellular immunity. We examined effects of alphaGalCer administration on autoimmune inflammation and characterized phenotypes and functional status of iNKT cells and dendritic cells in alphaGalCer-treated NOD mice. Although iNKT cells became and remained anergic after the initial exposure to their ligand, anergic iNKT cells induce noninflammatory DCs in response to alphaGalCer restimulation, whereas activated iNKT cells induce immunogenic maturation of DCs in a small time window after the priming. Induction of noninflammatory DCs results in the activation and expansion of islet-specific T cells with diminished proinflammatory cytokine production. The noninflammatory DCs function at inflammation sites in an Ag-specific fashion, and the persistence of noninflammatory DCs critically inhibits autoimmune pathogenesis in NOD mice. Anergic differentiation is a regulatory event that enables iNKT cells to transform from promoters to suppressors, down-regulating the ongoing inflammatory responses, similar to other regulatory T cells, through a ligand-dependent mechanism.  相似文献   
6.
Control of NKT cell differentiation by tissue-specific microenvironments   总被引:4,自引:0,他引:4  
CD1d-restricted Valpha14 NKT cells play an important role in both Th1- and Th2-type immune responses. To determine whether NKT cells develop two functionally distinct subsets that provoke different types of responses, we examined the phenotypes and cellular functions of NK1.1(+) and DX5(+) T cells. We found that both NK1.1(+) and DX5(+) T cells are CD1d-restricted Valpha14 T cells with identical Ag specificities, phenotypes, tissue locations, and functions. Similar to the NK1.1 marker, the DX5 marker (CD49b) is expressed on mature NKT cells in both NK1.1 allele-positive and allele-negative strains. However, when NK1.1(+) and DX5(+) NKT cells isolated from different tissues were compared, we found that thymic and splenic NKT cells differed not only in their cytokine profiles, but also in their phenotype and requirements for costimulatory signals. Thymic NKT cells displayed the phenotype of activated T cells and could be fully activated by TCR ligation. In contrast, splenic NKT cells displayed the phenotype of memory T cells and required a costimulatory signal for activation. Furthermore, the function and phenotype of thymic and splenic NKT cells were modulated by APCs from various tissues that expressed different levels of costimulatory molecules. Modulation of NKT cell function and differentiation may be mediated by synergic effects of costimulatory molecules on the surface of APCs. The results of the present study suggest that the costimulatory signals of tissue-specific APCs are key factors for NKT cell differentiation, and these signals cannot be replaced by anti-CD28 or anti-CD40 ligand Abs.  相似文献   
7.
In the future, humans may live in space because of global pollution and weather fluctuations. In microgravity, convection does not occur, which may change the amyloidogenicity of proteins. However, the effect of gravity on amyloid fibril formation is unclear and remains to be elucidated. Here, we analyzed the effect of microgravity on amyloid fibril formation of amyloidogenic proteins including insulin, amyloid β42 (Aβ42), and transthyretin (TTR). We produced microgravity (10?3 g) by using the gravity controller Gravite. Human insulin, Aβ42, and human wild-type TTR (TTRwt) were incubated at pH 3.0, 7.0, and 3.5 at 37 °C, respectively, in 1 g on the ground or in microgravity. We measured amyloidogenicity via the thioflavin T (ThT) method and cell-based 1-fluoro-2,5-bis[(E)-3-carboxy-4-hydroxystyryl]benzene (FSB) assay. ThT fluorescence intensity and cell-based FSB assay results for human insulin samples were decreased in microgravity compared with results in 1 g. Aβ42 samples did not differ in ThT fluorescence intensity in microgravity and in 1 g on the ground. However, in the cell-based FSB assay, the staining intensity was reduced in microgravity compared with that on 1 g. Human TTRwt tended to form fewer amyloid fibrils in ThT fluorescence intensity and cell-based FSB assays in microgravity than in 1 g. Human insulin and Aβ42 showed decreased amyloid fibril formation in microgravity compared with that in 1 g. Human TTRwt tended to form fewer amyloid fibrils in microgravity. Our experiments suggest that the earth's gravity may be an accelerating factor for amyloid fibril formation.  相似文献   
8.
We correlated theadenine nucleotide (AN) levels and energy charge (EC) at the end of atransient oxidative exposure to the delayed death of neuronal cells.When wild-type (WT) or Bcl-2-overexpressing (BCL-2) human neuroblastomacells (Paju) were exposed to 250 µM H2O2for 60 min, the EC of WT cells was unchanged, but that of BCL-2 cellsdecreased from 0.91 ± 0.03 to 0.67 ± 0.02. Depletion of ANs wassignificantly greater in BCL-2 (66.7 ± 2%) than in WT (38.8 ± 2%) cells. Proliferation of both lines decreased, averaging 63 ± 17% of control by 48 h. Exposure to 5 mMH2O2caused no further change in ANs in BCL-2 cells but in WT cellsdecreased the EC to 0.45 ± 0.08 and depleted ANs to 41 ± 9% ofcontrol; after 24 h, WT cells became pyknotic and showed DNAfragmentation but no chromatin condensation, whereas BCL-2 cells diedby delayed necrosis. After 10 mMH2O2,EC dropped to 0.15 ± 0.1, and both lines were acutely killed. TheEC after an oxidative insult correlated well with further growth ofboth cell lines. A significant decline in EC led to delayed death.Bcl-2 did not protect against the fall in EC or AN depletion, but,although survival was not improved, the mechanism of death appeared tobe different.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号