首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  17篇
  2024年   1篇
  2021年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.

Background

Left ventricular hypertrophy (LVH) is a major cardiovascular risk factor. The electrocardiogram (ECG) has been shown to be a poor tool in detecting LVH due to cardiac and extracardiac factors. We studied the determinants and possibility of improving the test performance of the ECG in a group of Black Africans.

Methods

We studied echocardiograms and electrocardiograms of 182 Cameroonian patients among whom 113 (62.1%) were having an echocardiographic LVH. Echocardiographic LVH was defined as Left Ventricular Mass Indexed to height 2.7(LVMI)>48 g/m2.7 in men, and >44 g/m 2.7 in women or Body Surface Area ≥116 g/m2 in men, and ≥96 g/m2 in women. Test performances were calculated for 6 classic ECG criteria Sokolow-Lyon, Cornell, Cornell product, Gubner-Ungerleiger, amplitudes of R in aVL, V5 and V6.

Results

The most sensitive criteria were Cornell (37.2%) and Sokolow-Lyon index (26.5%). The most specific criteria were Gubner (98.6%), RaVL (97.1%), RV5/V6 (95.7%) and Cornell product (94.2%). The performance of the ECG in diagnosing LVH significantly increased with the severity of LVH for Cornell index (r = 0.420, p<0.0001) and Sokolow index (r = 0.212, p = 0.002). It decreased with body habitus (r = −0.248, p = 0.001) for Sokolow-Lyon index. Cornell index was less affected (age p = 0.766; body habitus: p = 0.209). After sex-specific adjustment for BMI, Cornell BMI sensitivity increased from 37.2% to 69% (r = 0.472, p<0.0001), and Sokolow-Lyon BMI sensitivity increased from 26.5% to 58.4% (r = 0.270, p<0.001).

Conclusion

The test performance of the ECG in diagnosing LVH is low in this Black African population, due to extracardiac factors such as age, sex, body habitus, and cardiac factors such as LVH severity and geometry. However, this performance is improved after adjustment for extracardiac factors.  相似文献   
2.
The chromosome of Mycobacterium tuberculosis (Mtb) encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s) served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as 'non-toxic'. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of 'non-toxic' VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase) activity demonstrated for Rv0065 and Rv0617--VapC proteins with similarity to Rv0549c and Rv3320c, respectively--these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.  相似文献   
3.
Infections with human parvoviruses B19 and recently discovered human bocaviruses (HBoVs) are widespread, while PARV4 infections are transmitted parenterally and prevalent specifically in injecting drug users and hemophiliacs. To investigate the exposure and circulation of parvoviruses related to B19 virus, PARV4, and HBoV in nonhuman primates, plasma samples collected from 73 Cameroonian wild-caught chimpanzees and gorillas and 91 Old World monkey (OWM) species were screened for antibodies to recombinant B19 virus, PARV4, and HBoV VP2 antigens by enzyme-linked immunosorbent assay (ELISA). Moderate to high frequencies of seroreactivity to PARV4 (63% and 18% in chimpanzees and gorillas, respectively), HBoV (73% and 36%), and B19 virus (8% and 27%) were recorded for apes, while OWMs were uniformly negative (for PARV4 and B19 virus) or infrequently reactive (3% for HBoV). For genetic characterization, plasma samples and 54 fecal samples from chimpanzees and gorillas collected from Cameroonian forest floors were screened by PCR with primers conserved within Erythrovirus, Bocavirus, and PARV4 genera. Two plasma samples (chimpanzee and baboon) were positive for PARV4, while four fecal samples were positive for HBoV-like viruses. The chimpanzee PARV4 variant showed 18% and 15% nucleotide sequence divergence in NS and VP1/2, respectively, from human variants (9% and 7% amino acid, respectively), while the baboon variant was substantially more divergent, mirroring host phylogeny. Ape HBoV variants showed complex sequence relationships with human viruses, comprising separate divergent homologues of HBoV1 and the recombinant HBoV3 species in chimpanzees and a novel recombinant species in gorillas. This study provides the first evidence for widespread circulation of parvoviruses in primates and enables future investigations of their epidemiology, host specificity, and (co)evolutionary histories.Autonomous parvoviruses known to infect humans comprise parvovirus B19 (18) and the recently discovered PARV4 (22) and human bocavirus (HBoV) (3). Members of the family Parvoviridae are genetically and biologically diverse and are classified into several genera or groups, showing marked differences in host range, pathology, and tissue/cellular tropisms (18). Human parvovirus B19, a member of the Erythrovirus genus, is transmitted primarily by the respiratory route but causes systemic infections. Erythroid progenitor cells are specifically targeted through expression of globoside P antigen, which acts as the B19 virus receptor for entry (5). In common with infections by most parvoviruses, B19 virus infections are acute; a period of intense viremia is followed by seroconversion for antibody to B19 virus and lifelong immunity from reinfection (29). Despite the clearance of viremia and seroconversion for antibody, lifelong persistence of viral DNA in tissues has been shown to occur (12, 20, 26, 28, 43, 58). Three genotypes of B19 virus have been described, differing in nucleotide sequence by approximately 13 to 14% (7, 21, 41, 53); genotypes 1 and 2 have been found in Europe, the United States, and other Western countries, while genotype 3 is restricted to sub-Saharan Africa and South America (7, 47, 49). B19 virus widely circulates in human populations worldwide; in Western countries, several studies have documented increasing frequencies of B19 virus seropositivity with age, rising to approximately 60 to 70% by adulthood (15, 39, 48, 61).Another human parvovirus, PARV4, shows markedly different epidemiology and transmission routes. It was originally detected in plasma from an individual with an “acute infection syndrome” resembling that of primary human immunodeficiency virus (HIV) infection (22). While this clinical presentation has not been observed again, infection with PARV4 is known to be widespread specifically in individuals with a history of parenteral exposure (injecting drug users [IDUs], hemophiliacs, polytransfused individuals), with a strikingly higher incidence in those infected with HIV-1 (13, 14, 30, 35, 54). These observations suggest that PARV4 is primarily transmitted though parenteral routes in Western countries (54, 56). In common with infection with the better-characterized human parvovirus B19, infection with PARV4 is associated with a period of acute viremia, followed by seroconversion for antibody and long-term persistence of viral DNA sequences in lymphoid and other tissue (33, 37, 52). Circulating variants of PARV4 have been classified into three distinct genotypes exhibiting approximately 8% nucleotide sequence divergence from each other. Genotypes 1 and 2 circulate in Western countries, while genotype 3 has to date been recorded only in sub-Saharan Africa (45, 55).The third human parvovirus, HBoV (3), shows a number of epidemiological and clinical attributes different from those of both B19 virus and PARV4. HBoV was originally found in the respiratory tract of young children and has been the subject of intense investigation as a potential cause of human respiratory disease (reviewed in references 1, 51, and 62). Although it is frequently detected by PCR in the nasopharynx of viremic individuals with primary infections with lower respiratory tract disease, other coinfecting respiratory viruses are frequently detected (19). HBoV additionally shows long-term, low-level carriage in the respiratory tract after primary infection, which further complicates PCR-based etiological studies (2, 38) and warrants the use of other diagnostic strategies, such as serology (30, 32, 59). In contrast to the rather minimal genetic diversity of B19 virus and PARV4 genotypes, bocaviruses infecting humans are now known to comprise three to four major genetic variants (termed types or species 1 to 4) (23, 24). HBoV1 and HBoV2 show 22%, 33%, and 20% amino acid sequence divergence from each other in the encoded viral nonstructural (NS), NP-1, and structural VP1/VP2 proteins, respectively, the latter potentially leading to antigenic diversity and some loss of antigenic cross-reactivity. A third type/species of HBoV is a chimeric form with a nonstructural gene region (NS, NP1) most similar to HBoV1, a recombination breakpoint in the intergenic region between NP1 and VP1, and structural genes related to those of HBoV2 (4, 23). Current data suggest that only HBoV1 is capable of infecting the respiratory tract; most published large-scale screening studies have failed to detect HBoV2 (or HBoV3) in respiratory samples (10, 11, 60), while all three types/species are detectable in fecal samples, indicating the existence of an alternative or additional site of virus replication (23). Despite extensive inquiry, the exact role of HBoV1 in respiratory disease remains unclear, as is the proposed etiological role of HBoV2 (and possibly HBoV3) in gastroenteritis (4, 11, 23, 50). Very recently, a fourth species/type, HBoV4, has been detected in fecal samples; genetically it also shows evidence for past recombination, with NS and NP1 region sequences grouping with HBoV2, while VP1/VP2 is more closely related to HBoV3 (23).We have little understanding of the past epidemiology, evolution, and origins of human parvoviruses. For both B19 virus and PARV4, evidence has been obtained for a temporal succession of genotypes over time (37, 43); in Europe, B19 virus genotype 1 largely replaced type 2 in the 1960 and 1970s (43), while current data indicate that a similar replacement of PARV4 genotypes occurred within the last 20 years (37). The highly restricted sequence diversity of currently circulating variants of PARV4 and B19 virus and of HBoV1 variants supports the hypothesis of a relatively recent emergence and spread of these viruses in human populations (36, 42, 64).The existence and evolution of parvoviruses on a much longer time scale is suggested by the observations that members of the Erythrovirus and Parvovirus genera both contain viruses that are highly host species specific and that the molecular phylogenies of both genera are largely congruent with those of their hosts (34). This has led to the hypothesis of long-term coevolution of parvoviruses with their host over the 90 million years of mammalian evolution and perhaps beyond. Among erythroviruses, simian homologues of B19 virus have been found in cynomolgus monkeys (44) and rhesus and pig-tailed macaques (16) and more genetically distant viruses have been characterized in chipmunks and cows (9, 63). Divergent homologues of PARV4 in pigs and cows have been described (31), while the bovine and canine parvoviruses distantly related to HBoV are the originally described members of the Bocavirus genus. However, the process of virus-host codivergence is known to be punctuated by occasional cross-species transmissions, including the well-documented spread of feline parvovirus to dogs (46). Based on serological evidence, the possible transmission of simian erythroviruses to animal handlers has been proposed (6).To gain further insights into the origins and evolution of human parvoviruses, we have performed large-scale serological and PCR-based screening of nonhuman primates (chimpanzees and gorillas) and of several species of Old World monkeys (OWMs) for evidence of infection with parvoviruses that are antigenically related to the human B19, PARV4, and HBoV viruses. By PCR, we have sought to genetically characterize homologues of the three autonomous human parvoviruses in apes and Old World monkey species and to analyze their evolutionary relationship to human and other mammalian homologues of these viruses.  相似文献   
4.
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm3 pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.  相似文献   
5.
Summary In the last decade, interest has been focused on human immunodeficiency virus (HIV) antibody assays and testing strategies that could distinguish recent infections from established infection in a single serum sample. Incidence estimates are obtained by using the relationship between prevalence, incidence, and duration of recent infection (window period). However, recent works demonstrated limitations of this approach due to the use of an estimated mean “window period.” We propose an alternative approach that consists in estimating the distribution of infection times based on serological marker values at the moment when the infection is first discovered. We propose a model based on the repeated measurements of virological markers of seroconversion for the marker trajectory. The parameters of the model are estimated using data from a cohort of HIV‐infected patients enrolled during primary infection. This model can be used for estimating the distribution of infection times for newly HIV diagnosed subjects reported in a HIV surveillance system. An approach is proposed for estimating HIV incidence from these results.  相似文献   
6.

Background

African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking.

Methodology/Principal Findings

We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a “one layer-one model” approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%), showed a positive correlation but less predictive power with serological status (r2 = 22%) aggregated at the village level but was not related to the illness status (r2 = 2%).

Conclusions/Significance

The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases.  相似文献   
7.
    
Spatio-temporally heterogeneous environments may lead to unexpected population dynamics. Knowledge is needed on local properties favouring population resilience at large scale. For pathogen vectors, such as tsetse flies transmitting human and animal African trypanosomosis, this is crucial to target management strategies. We developed a mechanistic spatio-temporal model of the age-structured population dynamics of tsetse flies, parametrized with field and laboratory data. It accounts for density- and temperature-dependence. The studied environment is heterogeneous, fragmented and dispersal is suitability-driven. We confirmed that temperature and adult mortality have a strong impact on tsetse populations. When homogeneously increasing adult mortality, control was less effective and induced faster population recovery in the coldest and temperature-stable locations, creating refuges. To optimally select locations to control, we assessed the potential impact of treating them and their contribution to the whole population. This heterogeneous control induced a similar population decrease, with more dispersed individuals. Control efficacy was no longer related to temperature. Dispersal was responsible for refuges at the interface between controlled and uncontrolled zones, where resurgence after control was very high. The early identification of refuges, which could jeopardize control efforts, is crucial. We recommend baseline data collection to characterize the ecosystem before implementing any measures.  相似文献   
8.
In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.  相似文献   
9.
Insulin treatment has been associated with a paradoxical worsening of diabetes retinopathy since many years in European cohorts. Recently, this issue has been stressed by some studies conducted in other parts of the world. However, the mechanism underlying such evolution is not well understood. An osmotic theory has been evocated but failed to explain the clinical features of the disease. Considering recent findings from basic and clinical research, we discuss the possibility of a synergistic hypothesis based on the simultaneous action of insulin and vascular endothelial growth factor on eye blood vessels. We postulate that exogenous insulin could act synergistically with the vascular endothelial growth factor expressed by ischemic retina so as to trigger vascular proliferation and the worsening of diabetes retinopathy.  相似文献   
10.
    
BackgroundGlossina austeni and Glossina brevipalpis (Diptera: Glossinidae) are the sole cyclical vectors of African trypanosomes in South Africa, Eswatini and southern Mozambique. These populations represent the southernmost distribution of tsetse flies on the African continent. Accurate knowledge of infested areas is a prerequisite to develop and implement efficient and cost-effective control strategies, and distribution models may reduce large-scale, extensive entomological surveys that are time consuming and expensive. The objective was to develop a MaxEnt species distribution model and habitat suitability maps for the southern tsetse belt of South Africa, Eswatini and southern Mozambique.Methodology/Principal findingsThe present study used existing entomological survey data of G. austeni and G. brevipalpis to develop a MaxEnt species distribution model and habitat suitability maps. Distribution models and a checkerboard analysis indicated an overlapping presence of the two species and the most suitable habitat for both species were protected areas and the coastal strip in KwaZulu-Natal Province, South Africa and Maputo Province, Mozambique. The predicted presence extents, to a small degree, into communal farming areas adjacent to the protected areas and coastline, especially in the Matutuíne District of Mozambique. The quality of the MaxEnt model was assessed using an independent data set and indicated good performance with high predictive power (AUC > 0.80 for both species).Conclusions/SignificanceThe models indicated that cattle density, land surface temperature and protected areas, in relation with vegetation are the main factors contributing to the distribution of the two tsetse species in the area. Changes in the climate, agricultural practices and land-use have had a significant and rapid impact on tsetse abundance in the area. The model predicted low habitat suitability in the Gaza and Inhambane Provinces of Mozambique, i.e., the area north of the Matutuíne District. This might indicate that the southern tsetse population is isolated from the main tsetse belt in the north of Mozambique. The updated distribution models will be useful for planning tsetse and trypanosomosis interventions in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号