首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
The oxygen evolving complex (OEC) of Photosystem II (PS II) incorporates a Mn-cluster and probably a further redox cofactor, X. Four quanta of light drive the OEC through the increasingly oxidized states S0 S1 S2 S3 S4 to yield O2 during the transition S4 S0. It has been speculated that the oxidation of water might be kinetically facilitated by the abstraction of hydrogen. This implied that the respective electron acceptor is deprotonated upon oxidation. Whether YZ and X fulfill this expectation is under debate. We have previously inferred a 'chemical' deprotonation of X based on the kinetics of proton release (Haumann M, Drerenstedt W, Hundelt M and Junge W (1996) Biochim Biophys Acta 1273: 237–250. Here, we investigated the rates of electron transfer and proton release as function of the D2O/H2O ratio, the pH, and the temperature both in thylakoids and PS II core particles. The largest kinetic isotope effect on the rate of electron transfer (factor of 2.1–2.4) and the largest pH-dependence (factor of about 2 between pH 5 and 8) was found on S2 S3 where X is oxidized. During the other transitions both factors were much smaller ( 1.4). Electron transfer is probably kinetically steered by proton transfer only during S2 S3. These results corroborate the notion that X serves as a hydrogen acceptor for bound water during S4 S0. We propose a consistent scheme for the final reaction with water to yield dioxygen: two two-electron (hydrogen) transfers in series with a peroxide intermediate.  相似文献   
2.
Photosystem II (PSII) oxidizes two water molecules to yield dioxygen plus four protons. Dioxygen is released during the last out of four sequential oxidation steps of the catalytic centre (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), S(3) --> S(4) --> S(0)). The release of the chemically produced protons is blurred by transient, highly variable and electrostatically triggered proton transfer at the periphery (Bohr effect). The extent of the latter transiently amounts to more than one H(+)/e(-) under certain conditions and this is understood in terms of electrostatics. By kinetic analyses of electron-proton transfer and electrochromism, we discriminated between Bohr-effect and chemically produced protons and arrived at a distribution of the latter over the oxidation steps of 1 : 0 : 1 : 2. During the oxidation of tyr-161 on subunit D1 (Y(Z)), its phenolic proton is not normally released into the bulk. Instead, it is shared with and confined in a hydrogen-bonded cluster. This notion is difficult to reconcile with proposed mechanisms where Y(Z) acts as a hydrogen acceptor for bound water. Only in manganese (Mn) depleted PSII is the proton released into the bulk and this changes the rate of electron transfer between Y(Z) and the primary donor of PSII P(+)(680) from electron to proton controlled. D1-His190, the proposed centre of the hydrogen-bonded cluster around Y(Z), is probably further remote from Y(Z) than previously thought, because substitution of D1-Glu189, its direct neighbour, by Gln, Arg or Lys is without effect on the electron transfer from Y(Z) to P(+)(680) (in nanoseconds) and from the Mn cluster to Y(ox)(Z).  相似文献   
3.
The catalytic Mn cluster of the photosynthetic oxygen-evolving system is oxidized via a tyrosine, Y(Z), by a photooxidized chlorophyll a moiety, P(+)(680). The rapid reduction of P(+)(680) by Y(Z) in nanoseconds requires the intactness of an acid/base cluster around Y(Z) with an apparent functional pK of <5. The removal of Mn (together with bound Ca) shifts the pK of the acid/base cluster from the acid into the neutral pH range. At alkaline pH the electron transfer (ET) from Y(Z) to P(+)(680) is still rapid (<1 micros), whereas at acid pH the ET is much slower (10-100 micros) and steered by proton release. In the intermediate pH domain one observes a mix of these kinetic components (see R. Ahlbrink, M. Haumann, D. Cherepanov, O. B?gershausen, A. Mulkidjanian, W. Junge, Biochemistry 37 (1998)). The overall kinetics of P(680)(+) reduction by Y(Z) in Mn-depleted photosystem II (PS II) has been previously shown to be slowed down by divalent cations (added at >10 microM), namely: Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) (C.W. Hoganson, P.A. Casey, O. Hansson, Biochim. Biophys. Acta 1057 (1991)). Using Mn-depleted PS II core particles from pea as starting material, we re-investigated this phenomenon at nanosecond resolution, aiming at the effect of divalent cations on the particular kinetic components of P(+)(680) reduction. To our surprise we found only the slower, proton steered component retarded by some added cations (namely Co(2+)/Zn(2+)>Fe(2+)>Mn(2+)). Neither the fast component nor the apparent pK of the acid/base cluster around Y(Z) was affected. Apparently, the divalent cations acted (electrostatically) on the proton release channel that connects the oxygen-evolving complex with the bulk water, but not on the ET between Y(Z) and P(+)(680), proper. Contrastingly, Ca(2+) and Mg(2+), when added at >5 mM, accelerated the slow component of P(+)(680) reduction by Y(Z) and shifted the apparent pK of Y(Z) from 7.4 to 6.6 and 6.7, respectively. It was evident that the binding site(s) for added Ca(2+) and Mg(2+) were close to Y(Z) proper. The data obtained are discussed in relation to the nature of the metal-binding sites in photosystem II.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号