首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The purpose of this study was to investigate whether the deadlift could be effectively incorporated with explosive resistance training (ERT) and to investigate whether the inclusion of chains enhanced the suitability of the deadlift for ERT. Twenty-three resistance trained athletes performed the deadlift with 30, 50, and 70% 1-repetition maximum (1RM) loads at submaximal velocity, maximal velocity (MAX), and MAX with the inclusion of 2 chain loads equal to 20 or 40% of the subjects' 1RM. All trials were performed on force platforms with markers attached to the barbell to calculate velocity and acceleration using a motion capture system. Significant increases in force, velocity, power, rate of force development, and length of the acceleration phase (p < 0.05) were obtained when repetition velocity increased from submaximal to maximal. During MAX repetitions with a constant resistance, the mean length of the acceleration phase ranged from 73.2 (±7.2%) to 84.9 (±12.2%) of the overall movement. Compared to using a constant resistance, the inclusion of chains enabled greater force to be maintained to the end of the concentric action and significantly increased peak force and impulse (p < 0.05), while concurrently decreasing velocity, power, and rate of force development (p < 0.05). The effects of chains were influenced by the magnitude of the chain and barbell resistance, with greater increases and decreases in mechanical variables obtained when heavier chain and barbell loads were used. The results of the investigation suggest that the deadlift can be incorporated effectively in ERT programs. Coaches and athletes should be aware that the inclusion of heavy chains may have both positive and negative effects on kinematics and kinetics of an exercise.  相似文献   
2.
The purpose of the investigation was to compare the kinematics and kinetics of the deadlift performed with 2 distinct barbells across a range of submaximal loads. Nineteen male powerlifters performed the deadlift with a conventional straight barbell and a hexagonal barbell that allowed the lifter to stand within its frame. Subjects performed trials at maximum speed with loads of 10, 20, 30, 40, 50, 60, 70, and 80% of their predetermined 1-repetition maximum (1RM). Inverse dynamics and spatial tracking of the external resistance were used to quantify kinematic and kinetic variables. Subjects were able to lift a heavier 1RM load in the hexagonal barbell deadlift (HBD) than the straight barbell deadlift (SBD) (265 ± 41 kg vs. 245 ± 39 kg, p < 0.05). The design of the hexagonal barbell significantly altered the resistance moment at the joints analyzed (p < 0.05), resulting in lower peak moments at the lumbar spine, hip, and ankle (p < 0.05) and an increased peak moment at the knee (p < 0.05). Maximum peak power values of 4,388 ± 713 and 4,872 ± 636 W were obtained for the SBD and HBD, respectively (p < 0.05). Across the submaximal loads, significantly greater peak force, peak velocity and peak power values were produced during the HBD compared to during the SBD (p < 0.05). The results demonstrate that the choice of barbell used to perform the deadlift has a significant effect on a range of kinematic and kinetic variables. The enhanced mechanical stimulus obtained with the hexagonal barbell suggests that in general the HBD is a more effective exercise than the SBD.  相似文献   
3.
The purpose of this study was to compare the biomechanics of the traditional squat with 2 popular exercise variations commonly referred to as the powerlifting squat and box squat. Twelve male powerlifters performed the exercises with 30, 50, and 70% of their measured 1 repetition maximum (1RM), with instruction to lift the loads as fast as possible. Inverse dynamics and spatial tracking of the external resistance were used to quantify biomechanical variables. A range of significant kinematic and kinetic differences (p < 0.05) emerged between the exercises. The traditional squat was performed with a narrow stance, whereas the powerlifting squat and box squat were performed with similar wide stances (48.3 ± 3.8, 89.6 ± 4.9, 92.1 ± 5.1 cm, respectively). During the eccentric phase of the traditional squat, the knee traveled past the toes resulting in anterior displacement of the system center of mass (COM). In contrast, during the powerlifting squat and box squat, a more vertical shin position was maintained, resulting in posterior displacements of the system COM. These differences in linear displacements had a significant effect (p < 0.05) on a number of peak joint moments, with the greatest effects measured at the spine and ankle. For both joints, the largest peak moment was produced during the traditional squat, followed by the powerlifting squat, then box squat. Significant differences (p < 0.05) were also noted at the hip joint where the largest moment in all 3 planes were produced during the powerlifting squat. Coaches and athletes should be aware of the biomechanical differences between the squatting variations and select according to the kinematic and kinetic profile that best match the training goals.  相似文献   
4.
One of the most popular exercises for developing lower-body muscular power is the weighted vertical jump. The present study sought to examine the effect of altering the position of the external load on the kinematics and kinetics of the movement. Twenty-nine resistance-trained rugby union athletes performed maximal effort jumps with 0, 20, 40, and 60% of their squat 1 repetition maximum (1RM) with the load positioned (a) on the posterior aspect of the shoulder using a straight barbell and (b) at arms' length using a hexagonal barbell. Kinematic and kinetic variables were calculated through integration of the vertical ground reaction force data using a forward dynamics approach. Performance of the hexagonal barbell jump resulted in significantly (p < 0.05) greater values for jump height, peak force, peak power, and peak rate of force development compared with the straight barbell jump. Significantly (p < 0.05) greater peak power was produced during the unloaded jump compared with all trials where the external load was positioned on the shoulder. In contrast, significantly (p < 0.05) greater peak power was produced when using the hexagonal barbell combined with a load of 20% 1RM compared with all other conditions investigated. The results suggest that weighted vertical jumps should be performed with the external load positioned at arms' length rather than on the shoulder when attempting to improve lower-body muscular performance.  相似文献   
5.
EcoHealth - As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号