首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   20篇
  2022年   9篇
  2021年   7篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2017年   4篇
  2016年   11篇
  2015年   20篇
  2014年   15篇
  2013年   29篇
  2012年   23篇
  2011年   23篇
  2010年   15篇
  2009年   7篇
  2008年   19篇
  2007年   22篇
  2006年   22篇
  2005年   10篇
  2004年   21篇
  2003年   17篇
  2002年   10篇
  2001年   11篇
  2000年   9篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1992年   9篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1975年   6篇
  1974年   1篇
  1972年   3篇
  1971年   4篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
排序方式: 共有383条查询结果,搜索用时 15 毫秒
1.
To study the influence of oxidative stress on energy metabolism and lipid peroxidation in erythrocytes, cells were incubated with increasing concentrations (0.5-10 mM) of hydrogen peroxide for 1 h at 37 degrees C and the main substances of energy metabolism (ATP, AMP, GTP and IMP) and one index of lipid peroxidation (malondialdehyde) were determined by HPLC on cell extracts. Using the same incubation conditions, the activity of AMP-deaminase was also determined. Under nonhaemolysing conditions (at up to 4 mM H2O2), oxidative stress produced, starting from 1 mM H2O2, progressive ATP depletion and a net decrease in the intracellular sum of adenine nucleotides (ATP + ADP + AMP), which were not paralleled by AMP formation. Concomitantly, the IMP level increased by up to 20-fold with respect to the value determined in control erythrocytes, when cells were challenged with the highest nonhaemolysing H2O2 concentration (4 mM). Efflux of inosine, hypoxanthine, xanthine and uric acid towards the extracellular medium was observed. The metabolic imbalance of erythrocytes following oxidative stress was due to a dramatic and unexpected activation of AMP-deaminase (a twofold increase of activity with respect to controls) that was already evident at the lowest dose of H2O2 used; this enzymatic activity increased with increasing H2O2 in the medium, and reached its maximum at 4 mM H2O2-treated erythrocytes (10-fold higher activity than controls). Generation of malondialdehyde was strictly related to the dose of H2O2, being detectable at the lowest H2O2 concentration and increasing without appreciable haemolysis up to 4 mM H2O2. Besides demonstrating a close relationship between lipid peroxidation and haemolysis, these data suggest that glycolytic enzymes are moderately affected by oxygen radical action and strongly indicate, in the change of AMP-deaminase activity, a highly sensitive enzymatic site responsible for a profound modification of erythrocyte energy metabolism during oxidative stress.  相似文献   
2.
3.
Production planning in flexible manufacturing may require the solution of a large-scale discrete-event dynamic stochastic optimization problem, due to the complexity of the system to be optimized, and to the occurrence of discrete events (new orders and hard failures). The production planning problem is here approached for a multistage multipart-type manufacturing shop, where each work cell can share its processing time among the different types of parts. The solution of this problem is obtained by an open-loop-feedback control strategy, updated each time a new event occurs. At each event time, two coupled problems are solved: 1) a product-order scheduling problem, conditioned on estimated values of the production capacities of all component work cells; and 2) a production-capacity planning problem, conditioned on predefined sequences of the product orders to be processed. In particular, the article aims at defining a production planning procedure that integrates both analytical tools, derived from mathematical programming, and knowledge-based rules, coming from experience. The objective is to formulate a hybrid (knowledge-based/analytical) planning architecture, and to analyze its use for multicell multipart-type manufacturing systems.  相似文献   
4.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   
5.
During C4 photosynthesis, CO2 is released in bundle-sheath cells by decarboxylation of C4 acids and then refixed via ribulose-1,5-bisphosphate carboxylase. In this study we examined the efficiency of this process by determining the proportion of the released CO2 that diffuses back to mesophyll cells instead of being refixed. This leak of CO2 was assessed by determining the amount of 14CO2 released from leaves during a chase in high [12CO2] following a 70-s pulse in 14CO2. A computer-based analysis of the time-course curve for 14CO2 release indicated a first-order process and provided an estimate of the initial velocity of 14CO2 release from leaves. From this value and the net rate of photosynthesis determined from the 14CO2 fixed in the pulse, the CO2 leak rate from bundle-sheath cells (expressed as a percentage of the rate of CO2 production from C4 acids) could be deduced. For nine species of Gramineae representing the different subgroups of C4 plants and two NAD-malic enzyme-type dicotyledonous species, the CO2 leak ranged between 8 and 14%. However, very high CO2 leak rates (averaging about 27%) were recorded for two NADP-malic enzyme-type dicotyledonous species of Flaveria. The results are discussed in terms of the efficiency of C4 photosynthesis and observed quantum yields.  相似文献   
6.
Short-term incomplete cerebral ischemia was induced in the rat by bilaterally clamping for 5 min the common carotid arteries; subsequent reperfusion of 10 min was obtained by removing carotid occlusion. At the end of ischemia or reperfusion, animals were sacrificed by decapitation. A control group was represented by sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. A highly sensitive HPLC method for the direct determination of malondialdehyde, oxypurines, and nucleosides was used on 200 μL of brain tissue and plasma extracts. Incomplete cerebral ischemia induced the, appearance of a significant amout of tissue malondialdehyde (undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia, significantly increased after 5 min of ischemia, being strikingly augmented after 10 min of reperfusion. A similar trend was observed for oxypurines and nucleosides. From these data, it can be affirmed that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism thus representing early biochemical markers of short-term incomplete brain ischemia, and reperfusion in the rat.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号