首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1997年   1篇
  1996年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   
2.
The objectives of this study were to characterize the effects of a chronic lithium (Li+) treatment on serotonin (5-HT) uptake sites and on 5-HT1A receptors, and to determine the eventual reversibility of the treatment. The experiments were carried out with membranes from rat cerebral cortex using 8-hydroxy-2-(propylamino)tetralin, or [3H]8-OH-DPAT, and [3H]citalopram to label 5-HT1A receptors and 5-HT uptake sites, respectively. Endogenous levels of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were measured by high-performance liquid chromatography in the cingulate cortex. The saturation curves with [3H]8-OH-DPAT were always best fitted a two-site model. After a treatment with Li+ for 28 days, no alterations in the binding parameters of [3H]8-OH-DPAT to the high- and low-affinity binding sites could be documented. However, competition curves with 5-HT to inhibit [3H]8-OH-DPAT binding revealed a decreased proportion of sites with high affinity for the agonist, together with an increased density of sites with low affinity for 5-HT, suggesting an alteration in the coupling efficacy between 5-HT1A receptors and their transduction systems. Saturation studies with [3H]citalopram showed an increase (>40%) in the density of 5-HT uptake sites after chronic Li+, suggesting a more efficient 5-HT uptake process for the treated animals, in accord with clinical observations. Although 5-HT contents in cingulate cortex remained unchanged after the treatment, 5-HIAA levels decreased (>30%), leading to a diminished (almost 50%) 5-HT turnover; and also reflecting a more efficient uptake in the treated rats, so that less 5-HT could be degraded by extracellular monoamine oxidase. All the effects revealed by [3H]8-OH-DPAT and [3H]citalopram were reversed following a recovery period of two days without Li+. Since symptoms of bipolar affective disorders may reappear if the chronic Li+ treatment is interrupted, the reversibility of the observed effects further supports the importance of central 5-HT synaptic transmission in the pathophysiology and treatment of human affective disorders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号