首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2002年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The characteristic feature of the physical structure of Lac Pavin is a distinct and permanent chemically induced density increase between about 60 and 70 m depth. This chemocline separates the seasonally mixed mixolimnion from the monimolimnion, which is characterized by elevated temperature and salinity as well as complete anoxia. Previously published box-models of the lake postulated substantial groundwater input at the lake bottom, and consequently a short water residence time in the monimolimnion and high fluxes of dissolved constituents across the chemocline. We present a new view of the physical structure and dynamics of Lac Pavin, which is based on the results of high-resolution CTD profiles, transient and geochemical tracers (tritium, CFCs, helium), and numerical modeling. The CTD profiles indicate the existence of a sublacustrine spring above rather than below the chemocline. A stability analysis of the water column suggests that vertical turbulent mixing in the chemocline is very weak. A numerical one-dimensional lake model is used to reconstruct the evolution of transient tracer distributions over the past 50 years. Model parameters such as vertical diffusivity and size of sublacustrine springs are constrained by comparison with observed tracer data. Whereas the presence of a significant water input to the monimolimnion can clearly be excluded, the input to the mixolimnion – both at the surface and from the indicated sublacustrine spring – cannot be accurately determined. The vertical turbulent diffusivity in the chemocline is well constrained to K 5×10-8 m2 s-1, about a factor of three below the molecular diffusivity for heat. Assuming thus purely molecular heat transport, the heat flow through the chemocline can be estimated to between 30 and 40 mW m-2. With respect to dissolved constituents, the very weak turbulent diffusive exchange is equivalent to a stagnant monimolimnion with a residence time of nearly 100 years. Based on these results and vertical concentration profiles of dissolved species, diffusive fluxes between monimolimnion and mixolimnion can be calculated. A large excess of helium with a 3He/4He ratio of (9.09 ± 0.01)×10-6 (6.57 R a) is present in the monimolimnion, clearly indicating a flux of magmatic gases into the monimolimnion. We calculate a flux of 1.0×10-12 mol m-2 s-1 for mantle helium and infer a flux of 1.2×10-7 mol m-2 s-1 (72 t year-1) for magmatic CO2. The monimolimnion appears to be in steady state with respect to these fluxes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号