首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   5篇
  74篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
排序方式: 共有74条查询结果,搜索用时 31 毫秒
1.
2.
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of chronic liver disease and is now considered to be the hepatic manifestation of the metabolic syndrome. However, the role of steatosis per se and the precise factors required in the progression to steatohepatitis or insulin resistance remain elusive. The JAK-STAT pathway is critical in mediating signaling of a wide variety of cytokines and growth factors. Mice with hepatocyte-specific deletion of Janus kinase 2 (L-JAK2 KO mice) develop spontaneous steatosis as early as 2 weeks of age. In this study, we investigated the metabolic consequences of jak2 deletion in response to diet-induced metabolic stress. To our surprise, despite the profound hepatosteatosis, deletion of hepatic jak2 did not sensitize the liver to accelerated inflammatory injury on a prolonged high fat diet (HFD). This was accompanied by complete protection against HFD-induced whole-body insulin resistance and glucose intolerance. Improved glucose-stimulated insulin secretion and an increase in β-cell mass were also present in these mice. Moreover, L-JAK2 KO mice had progressively reduced adiposity in association with blunted hepatic growth hormone signaling. These mice also exhibited increased resting energy expenditure on both chow and high fat diet. In conclusion, our findings indicate a key role of hepatic JAK2 in metabolism such that its absence completely arrests steatohepatitis development and confers protection against diet-induced systemic insulin resistance and glucose intolerance.  相似文献   
3.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
4.
5.
The mechanisms of the impairment in hepatic glucose metabolism induced by free fatty acids (FFAs) and the importance of FFA oxidation in these mechanisms remain unclear. FFA-induced peripheral insulin resistance has been linked to membrane translocation of novel protein kinase C (PKC) isoforms, but the role of PKC in hepatic insulin resistance has not been assessed. To investigate the biochemical pathways that are induced by FFA in the liver and their relation to glucose metabolism in vivo, we determined endogenous glucose production (EGP), the hepatic content of citrate (product of acetyl-CoA derived from FFA oxidation and oxaloacetate), and hepatic PKC isoform translocation after 2 and 7 h Intralipid + heparin (IH) or SAL in rats. Experiments were performed in the basal state and during hyperinsulinemic clamps (insulin infusion rate, 5 mU. kg(-1). min(-1)). IH increased EGP in the basal state (P < 0.001) and during hyperinsulinemia (P < 0.001) at 2 and 7 h. Also, 7-h infusion of IH induced resistance to the suppressive effect of insulin on EGP (P < 0.05). Glycerol infusion (resulting in plasma glycerol levels similar to IH infusion) did not have any effect on EGP. IH increased hepatic citrate content by twofold, independent of the insulin levels and the duration of IH infusion. IH induced hepatic PKC-delta translocation from the cytosolic to membrane fraction in all groups. PKC-delta translocation was greater at 7 compared with 2 h (P < 0.05). In conclusion, 1) increased FFA oxidation may contribute to the FFA-induced increase in EGP in the basal state and during hyperinsulinemia but is not associated with FFA-induced hepatic insulin resistance, and 2) the progressive insulin resistance induced by FFA in the liver is associated with a progressive increase in hepatic PKC-delta translocation.  相似文献   
6.
Biosurfactants are a unique class of compounds that have been shown to have a variety of potential applications in the remediation of organic- and metal-contaminated sites, in the enhanced transport of bacteria, in enhanced oil recovery, as cosmetic additives, and in biological control. However, little is known about the distribution of biosurfactant-producing bacteria in the environment. The goal of this study was to determine how common culturable surfactant-producing bacteria are in undisturbed and contaminated sites. A series of 20 contaminated (i.e., with metals and/or hydrocarbons) and undisturbed soils were collected and plated on R(2)A agar. The 1,305 colonies obtained were screened for biosurfactant production in mineral salts medium containing 2% glucose. Forty-five of the isolates were positive for biosurfactant production, representing most of the soils tested. The 45 isolates were grouped by using repetitive extragenic palindromic (REP)-PCR analysis, which yielded 16 unique isolates. Phylogenetic relationships were determined by comparing the 16S rRNA gene sequence of each unique isolate with known sequences, revealing one new biosurfactant-producing microbe, a Flavobacterium sp. Sequencing results indicated only 10 unique isolates (in comparison to the REP analysis, which indicated 16 unique isolates). Surface tension results demonstrated that isolates that were similar according to sequence analysis but unique according to REP analysis in fact produced different surfactant mixtures under identical growth conditions. These results suggest that the 16S rRNA gene database commonly used for determining phylogenetic relationships may miss diversity in microbial products (e.g., biosurfactants and antibiotics) that are made by closely related isolates. In summary, biosurfactant-producing microorganisms were found in most soils even by using a relatively limited screening assay. Distribution was dependent on soil conditions, with gram-positive biosurfactant-producing isolates tending to be from heavy metal-contaminated or uncontaminated soils and gram-negative isolates tending to be from hydrocarbon-contaminated or cocontaminated soils.  相似文献   
7.
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.  相似文献   
8.
In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1-2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ~ 34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories.  相似文献   
9.
A series of substituted N-(3,5-dichlorobenzenesulfonyl)-(L)-prolyl- and (L)-azetidyl-beta-biaryl beta-alanine derivatives was prepared as selective and potent VLA-4 antagonists. The 2,6-dioxygenated biaryl substitution pattern is important for optimizing potency. Oral bioavailability was variable and may be a result of binding to circulating plasma proteins.  相似文献   
10.
Beyond Chiefdoms: Pathways to Complexity in Africa. Susan Keech Mclntosh. ed. New York: Cambridge University Press, 1999.176 pp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号