首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2325篇
  免费   72篇
  2024年   2篇
  2023年   12篇
  2022年   3篇
  2021年   17篇
  2020年   8篇
  2019年   10篇
  2018年   28篇
  2017年   23篇
  2016年   34篇
  2015年   43篇
  2014年   39篇
  2013年   86篇
  2012年   278篇
  2011年   836篇
  2010年   357篇
  2009年   425篇
  2008年   59篇
  2007年   30篇
  2006年   22篇
  2005年   14篇
  2004年   10篇
  2003年   16篇
  2002年   20篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有2397条查询结果,搜索用时 15 毫秒
1.
2.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
3.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
4.
5.
Mitogenic stimulation of protein synthesis is accompanied by an increase in elF-4E phosphorylation. The effect on protein synthesis by induction of differentiation is less well known. We treated P19 embryonal carcinoma cells with the differentiating agent retinoic acid and found that protein synthesis increased during the first hour of addition. However, the phosphorylation state, as well as the turnover of phosphate on elF-4E, remained unchanged. Apparently, the change in protein synthesis after RA addition is regulated by another mechanism than elF-4E phosphorylation. By using P19 cells overexpressing the EGF receptor, we show that the signal transduction pathway that leads to phosphorylation of elF-4E is present in P19 cells; the EGF-induced change in phosphorylation of elF-4E in these cells is likely to be regulated by a change in elF-4E phosphatase activity. These results suggest that the onset of retinoic acid-induced differentiation is triggered by a signal transduction pathway which involves changes in protein synthesis, but not elF-4E phosphorylation. © 1995 Wiley-Liss, Inc.  相似文献   
6.
7.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   
8.
Autoimmunity is a known factor in the pathogenesis of islet cell destruction, but little is known of its role in the pathogenesis of the neuronal complications of diabetes. We carried out a cross-sectional study of 94 subjects with Type I diabetes mellitus (DM) to examine the relationship between duration and presence of complement fixing anti-adrenal medullary antibodies (CF-ADM). CF-ADM were present in 19% of subjects (n = 62) with duration of DM less than or equal to 16 years and 3% of subjects (n = 32) with duration of DM greater than 16 years. All subjects with CF-ADM+ and duration of DM 0-5 years (n = 7) were islet cell antibody positive (ICA+). Among subjects with duration of DM 6-16 years who were CF-ADM+, 4 of 5 subjects were ICA- and 1 of 5 subjects was ICA+. The only CF-ADM+ subject with duration of DM greater than 16 years was ICA-. Absorption of ADM+ and ICA+ sera with upper phase glycolipid extract blocks ICA but not ADM binding to tissue. This study suggests: 1) CF-ADM positivity is associated with ICA positivity in subjects with duration of DM 0-5 years. CF-ADM positivity persists after 5 years duration of DM when islet cell antibodies have disappeared. Therefore, the antigenic target of the adrenal medulla and pancreatic islets may be different. 2) There is an increased prevalence of CF-ADM in subjects with duration of DM 0-16 years (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
10.
A crude ribosomal wash containing the initiation factors of protein synthesis was isolated from mouse neuroblastoma cells 8 h after infection with Semliki Forest virus (SFV). The activity of this wash was compared with that of a wash from control cells in a cell-free protein-synthesizing “pH5” system, with early SFV mRNA (42S), late SFV mRNA (26S), encephalomyocarditis virus (EMC) mRNA, or neuroblastoma polyadenylated mRNA templates. A pronounced loss of activity (±80%) of the crude ribosomal wash from infected cells was observed with host mRNA (neuroblastoma polyadenylated mRNA) and early SFV mRNA, messengers which contain a cap structure at the 5′ terminus. However, these washes were only slightly less active in systems programmed with (noncapped) EMC mRNA and late SFV mRNA. Although late SFV mRNA (26S) is capped, the synthesis of late (= structural) proteins in infected lysates was insensitive to inhibition by cap analogs. Purified initiation factors eIF-4B (Mr, 80,000) and cap-binding protein (Mr, 24,000) from reticulocytes (but none of the others) were able to restore the activity of infected factors to about 90% of control levels in systems programmed with early SFV mRNA and host mRNA. These observations indicate that infection-exposed crude initiation factors have a decreased level of eIF-4B and cap-binding protein activity. However, after partial purification of these and other initiation factors from infected and control cells, we found no significant difference in activity when model assay systems were used. Furthermore, both eIF-4B and cap-binding protein from infected cells were able to restore the activity of these infection-exposed factors to the same level obtained when these factors isolated from control cells or reticulocytes were added. A possible mechanism for the shutoff of host cell protein synthesis is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号