首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   29篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   20篇
  2020年   11篇
  2019年   9篇
  2018年   19篇
  2017年   12篇
  2016年   18篇
  2015年   25篇
  2014年   16篇
  2013年   28篇
  2012年   25篇
  2011年   32篇
  2010年   13篇
  2009年   11篇
  2008年   18篇
  2007年   19篇
  2006年   12篇
  2005年   13篇
  2004年   6篇
  2003年   13篇
  2002年   10篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
1.
2.
Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1−/D mice). Ckmm-Cre+/−;Ercc1−/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/−;Ercc1−/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/-;Ercc1−/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/−;Ercc1−/fl and Ercc1−/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.  相似文献   
3.
This paper describes a method that facilitates the extraction of PCR-compatible DNA from different activated sludge samples. The approach involves a novel preprocessing step in DNA extraction, which removes potential PCR inhibitors. The sludge was washed with different ratios of acetone and petroleum ether after pretreatment with 0.01% Tween-20 at 50 degrees C. It was observed that an initial washing step with 50 mM Tris-HCl, pH 9.0, before the detergent-solvent step, improved the quality of the extracted DNA. The extraction protocol resulted in amplifiable amounts of DNA when 10 mg of a sludge sample was used, even in the presence of phenol as a sludge contaminant. The usefulness of the extracted template was demonstrated by carrying out different PCR reactions. The random amplified polymorphic DNA (RAPD) patterns demonstrated the diversity of sludge samples.  相似文献   
4.
5.
Phenol degradation by Bacillus cereus AKG1 MTCC9817 and AKG2 MTCC 9818 was investigated and degradation kinetics are reported for the free and Ca-alginate gel-immobilized systems. The optimal pH for maximum phenol degradation by immobilized AKG1 and AKG2 was found to be 6.7 and 6.9, respectively, while 3% alginate was optimum for both the strains. The degradation of phenol by free as well as immobilized cells was comparable at lower concentrations of phenol (100–1000 mg l−1). However, the degradation efficiency of the immobilized strains was higher than that of the free strains at higher phenol concentrations (1500–2000 mg l−1), indicating the improved tolerance of the immobilized cells toward phenol toxicity. More than 50% of 2000 mg l−1 phenol was degraded by immobilized AKG1 and AKG2 within 26 and 36 days, respectively. Degradation kinetics of phenol by free and immobilized cells are well represented by the Haldane and Yano model.  相似文献   
6.
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane‐bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2‐CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2‐CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid‐solubilized CYP2J2‐CPR system by increasing the Km and decreasing the Vmax, and effect that is size‐dependent. Crowding also affects the CYP2J2‐CPR‐ND system by decreasing both the Km and Vmax for Dextran‐based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2‐CPR membrane protein system.  相似文献   
7.
8.
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an RNA virus that causes coronavirus infection (COVID‐19). COVID‐19 is a highly contagious disease transmitted through respiratory droplets, saliva and other contact routes. Within 10 months of its outbreak, SARS‐CoV‐2 has infected more than 23 million people around the world. Evidence suggests that older adults are the most vulnerable to infection and have an increased risk of mortality. Reduced immunity and underlying medical conditions make them risk‐prone and vulnerable to critical care. Older adults affected with the SARS‐CoV‐2 virus present with distinct clinical manifestations necessitating specific treatment needs and management protocols. While it is crucial to prevent the spread of novel coronavirus (2019‐nCoV), the role of oral healthcare workers in addressing the specific needs of ageing adult patients by adopting specific guidelines and appropriate infection control protocols is timely. This paper aims to develop specific guidelines and protocols for the dental management of geriatric patients during the COVID‐19 pandemic.  相似文献   
9.
Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin.  相似文献   
10.
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7), a G protein‐coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号