首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Developmental mutants serve as a useful material to unravel the mechanisms necessary for organ development. The polycotyledon (poc) mutant of tomato, with multiple cotyledons in the seedling and varied phenotypic effects in the adult plant is one such mutant. Studies using physiological and anatomical methods in our lab suggest that POC is involved in the negative regulation of polar auxin transport, which is likely the reason for the pleiotropic phenotype in the mutant. Because of the physiological significance of the polycotyledon mutant described in this paper and also being first of its kind in tomato and also other plant species, we are using a map-based cloning approach to map the polycotyledon gene. Molecular mapping of this locus using segregating interspecific F2 mapping population localized polycotyledon gene close to TG424 marker on the long arm of chromosome 9. The closest marker mapped was a PCR marker identified in this study, E8A2 at a distance of 7.4 cM from the poc locus. The absence of tightly linked RAPD markers and the non-availability of more mapped markers in this region led us to initiate chromosome walk to polycotyledon gene. Both the flanking markers TG248 and E8A2 were used to screen the BAC library and a contig was developed for TG248 marker. The BAC-end sequences were analyzed for their use as RFLP markers to enrich this region for markers. Analysis of the BAC-end sequences revealed that poc is localized in the region surrounded by copia-like retrotransposon elements explaining the absence of markers in the euchromatin region on long arm of chromosome 9. Further studies identified two BAC-end sequences which mapped around the poc locus and also indicated very low physical versus genetic distance ratio in this region. The double mutant analyses of poc with the other two known polycotyledon mutants of tomato, pct and dem revealed allelism with pct; therefore, the poc mutant was named as pct1-2, and also the original pct mutant was renamed as pct1-1.  相似文献   
2.
The polycotyledon mutant of tomato (Lycopersicon esculentum L. cv Ailsa Craig) showed altered development during embryogenesis and during vegetative and reproductive phases. The phenotype was pleiotropic and included the formation of extra cotyledons, changes in leaf shape, increased number of flowers (indeterminacy) with abnormal floral organs, the formation of epiphyllous structures, and altered gravitropism. The earliest defects were observed at the transition from the globular to the heart stage of embryogenesis with the formation of multiple cotyledons. Epidermal cells in the mutant embryo were smaller and less expanded compared with wild type. Examination of polar auxin transport (PAT) showed a striking enhancement in the case of the mutant. Increase in PAT did not appear to be caused by a decrease in flavonoids because the mutant had normal flavonoid levels. Application of 2,3,5-triiodobenzoic acid, an inhibitor of polar transport of auxin, rescued postgermination phenotypes of young seedlings. Our analysis reveals a level of control that negatively regulates PAT in tomato and its contribution to plant development and organogenesis.  相似文献   
3.
In vivo biotelemetry studies have demonstrated that heart rate (HR) is progressively and rapidly reduced after administration of streptozotocin (STZ) and that the reduction in HR can be partially normalized with insulin replacement. Reductions in HR have also been reported in isolated perfused heart and superfused right atrial preparations suggesting that intrinsic defects in the heart are at least partly responsible for the bradycardia. The regional effects of STZ-induced diabetes mellitus (DM) on action potentials (APs) in the sinoatrial node (SAN), right and left atria and ventricles have been compared in the spontaneously beating Langendorff perfused rat heart 10–12 weeks after treatment. HR was significantly reduced in STZ-induced diabetic rat heart (174 ± 9 BPM) compared to controls (241 ± 12 BPM). The duration of AP repolarization at 50% and 70% from peak AP was significantly prolonged in SAN, right atrium and right ventricle from STZ-induced diabetic rat compared to age-matched controls. In the SAN AP duration (APD) at 50% and 70% were 51.7 ± 2.2 and 59.5 ± 2.3 ms in diabetic rat heart compared to 45.2 ± 1.7 and 50.0 ± 1.6 ms in controls, respectively. In contrast APD at 50% and 70% were not significantly altered in the left atrium and left ventricle. Regional defects in the expression and/or electrophysiology of SAN ion channels, and in particular those involved in AP repolarization, might underlie heart rhythm disturbances in the STZ-induced DM rat.  相似文献   
4.
BackgroundRespiratory gated CT simulation (4D-simulation) has been evolved to estimate the internal body motion. This study aimed to evaluate the impact of tumor volume and location on the planning target volume (PTV) for primary lung tumor when 4D simulation is used.MethodsPatients who underwent CT simulation for primary lung cancer radiotherapy between 2012 and 2016 using a 3D- (free breathing) and 4D- (respiratory gated) technique were reviewed. For each patient, gross tumor volume (GTV) was contoured in a free breathing scan (3D-GTV), and 4D-simulation scans (4D-GTV). Margins were added to account for the clinical target volume (CTV) and internal target motion (ITV) in 3D and 4D simulation scans. Additional margins were added to account for planned target volume (PTV). Univariate and multivariate analyses were performed to test the impact of the volume of the GTV and location of the tumor (relative to the bronchial tree and lung lobes) on PTV changes by more than 10% between the 3D and 4D scans.ResultsA total of 10 patients were identified. 3D-PTV was significantly larger than the 4D-PTV; median volumes were 182.79 vs. 158.21 cc, p = 0.0068). On multivariate analysis, neither the volume of the GTV (p = 0.5027) nor the location of the tumor (peripheral, p = 0.5027 or lower location, p = 0.5802) had an impact on PTV differences between 3D-simulation and 4D-simluation.ConclusionThe use of 4D-simulation reduces the PTV for the primary tumor in lung cancer cases. Further studies with larger samples are required to confirm the benefit of 4D-simulation in decreasing PTV in lung cancer.  相似文献   
5.
ABSTRACT: BACKGROUND: Primary immunodeficiency (PID) is a cluster of serious disorders that requires special alertness on the part of the medical staff for prompt diagnosis and management of the patient. This study explored PID knowledge and experience among pediatricians of wide educational backgrounds, practicing in the United Arab Emirates (UAE). METHOD: A self-administered questionnaire was used to determine the competency of pediatricians in their knowledge of PID disorders. This study questionnaire included questions on PID signs and symptoms, syndromes associated with immunodeficiency, screening tests, interpreting laboratory tests and case management. The participants were 263 pediatricians of diverse education working in the 27 governmental hospitals in all regions of UAE. RESULTS: The overall performance of the pediatricians did not differ based on their age, gender, origin of certification, rank, or years of experience. Of the 50 questions, 20% of pediatricians answered correctly <60% of the questions, 76% answered correctly 60 to 79% of the questions, and 4% answered correctly >80% of the questions. Seventeen of the 19 PID signs and symptoms were identified by 55 to 97%. Four of 5 syndromes associated with immunodeficiency were identified by 50 to 90%. Appropriate screening tests were chosen by 64 to 96%. Attention to the laboratory reference range values as function of patient age was notably limited. CONCLUSIONS: There was a noteworthy deficiency in PID work-up. Therefore, implementing effective educational strategies is needed to improve the competency of pediatricians to diagnose and mange PID disorders.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号