首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   
2.
The purpose of this study was to examine two hypotheses: (a) mat hardness affects foot motion during landing; (b) the influence of a surface stabilising interface integrated in a mat on foot motion is detectable. Two studies were carried out: In the first one, six female gymnasts performed barefoot landings from different falling heights onto three mats having different hardness. In the second study, a stabilising mechanism was integrated in the surface of three new mats with different hardness. Three high speed video cameras (250Hz) captured the motion of the left leg and foot. These were modelled by means of a four rigid body system. The maximal eversion at the ankle joint was not influenced by the different mats (hard: 4.6 degrees +/-1.9 to 9.3 degrees +/-3.4, medium: 3.1 degrees +/-2.7 to 7.4 degrees +/-3.5, soft: 4.8 degrees +/-2.1 to 8.4 degrees +/-3.5). The soft mat without the stabilised surface showed higher eversion values (p<0.05) between forefoot and rearfoot (medial joint: hard: 5.1 degrees +/-3.2 to 7.3 degrees +/-3.3, medium: 6.9 degrees +/-3.1 to 7.5 degrees +/-2.9, soft: 12.7 degrees +/-4.1 to 13.4 degrees +/-3.3; lateral joint: hard: 8.5 degrees +/-3.1 to 9.7 degrees +/-1.1, medium: 9.5 degrees +/-2.6 to 11.2 degrees +/-3.3, soft: 12.1 degrees +/-2.3 to 15.7 degrees +/-3.3). For the mats with the surface stabilising interface, the different hardness did not cause any significant differences in maximal eversion values at the medial (hard: 1.5 degrees +/-3.3 to 5.5 degrees +/-4.5, medium: 1.3 degrees +/-3.5 to 5.1 degrees +/-3.6, soft: 0.7 degrees +/-4.9 to 5.4 degrees +/-4.2) nor at the lateral (hard: 11.3 degrees +/-4.2 to 17.3 degrees +/-4.2, medium: 12.3 degrees +/-4.8 to 17.1 degrees +/-3.7, soft: 11.5 degrees +/-4.6 to 17.1 degrees +/-4.3) forefoot joints. The structure of the mat and the consequent deformation hollow did not influence the kinematics of the ankle joint during landings, but it influenced the motion at the medial and the lateral forefoot joints. By means of a stabilised surface, it is possible to reduce the influence of mat deformation on the maximal eversion between forefoot and rearfoot.  相似文献   
3.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   
4.
The purposes of this study were: (a) to examine the interactions between the athlete and the pole and the possibility for the athlete to take advantage of the pole's elasticity by means of muscular work and (b) to develop performance criteria during the interaction between the athlete and the pole in pole vaulting. Six athletes performed 4-11 trials each, at 90% of their respective personal best performance. All trials were recorded using four synchronized, genlocked video cameras operating at 50 Hz. The ground reaction forces exerted on the bottom of the pole were measured using a planting box fixed on a force plate (1000 Hz). The interaction between athlete and pole may be split into two parts. During the first part, energy is transferred into the pole and the total energy of the athlete decreases. The difference between the energy decrease of the athlete and the pole energy is an indicator of the energy produced by the athletes by means of muscular work (criterion 1). During the second part of the interaction, energy is transferred back to the athlete and the total energy of the athlete increases. The difference between the returned pole energy and the amount of energy increase of the athlete defines criterion 2. In general, the function of the pole during the interaction is: (a) store part of the kinetic energy that the athlete achieved during the run up as strain energy and convert this strain energy into potential energy of the athlete, (b) allow the active system (athlete) to produce muscular work to increase the total energy potential.  相似文献   
5.
The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.  相似文献   
6.
The purpose of this study was to provide evidence on the fact that the observed decrease in EMG activity of the gastrocnemius medialis (GM) at pronounced knee flexed positions is not only due to GM insufficiency, by examining muscle fascicle lengths during maximal voluntary contractions at different positions. Twenty-two male long distance runners (body mass: 78.5+/-6.7 kg, height: 183+/-6 cm) participated in the study. The subjects performed isometric maximal voluntary plantar flexion contractions (MVC) of their left leg at six ankle-knee angle combinations. To examine the resultant ankle joint moments the kinematics of the left leg were recorded using a Vicon 624 system with 8 cameras operating at 120 Hz. The EMG activity of GM, gastrocnemius lateralis (GL), soleus (SOL) and tibialis anterior (TA) were measured using surface electromyography. Synchronously, fascicle length and pennation angle values of the GM were obtained at rest and at the plateau of the maximal plantar flexion using ultrasonography. The main findings were: (a) identifiable differences in fascicle length of the GM at rest do not necessarily imply that these differences would also exist during a maximal isometric plantar flexion contraction and (b) the EMG activity of the biarticular GM during the MVC decreased at a pronounced flexed knee-joint position (up to 110 degrees ) despite of no differences in GM fascicle length. It is suggested that the decrease in EMG activity of the GM at pronounced knee flexed positions is due to a critical force-length potential of all three muscles of the triceps surae.  相似文献   
7.
In earlier studies, we found more economical runners having a more compliant quadriceps femoris (QF) tendon at low force levels, and a higher contractile strength and stiffness at the triceps surae (TS). To better understand how these differences influence force generation economy and energy recovery, we simulated contractions using a Hill-type muscle model and the previously determined muscle properties as input parameters. For eight different activation levels, we simulated isovelocity concentric contractions preceded by an isovelocity stretch. The length changes and contraction velocities imposed to the muscle–tendon units (MTU) corresponded to those happening whilst running. The main results of the simulations were: (a) a more compliant tendon at low force levels (QF) led to an advantage in force-generation due to a decrease in shortening velocity of the CE, (b) a higher contractile strength and higher stiffness at the TS led to a disadvantage in force-generation at high activation levels and to an advantage at low activation levels. In addition at the high economy runners both MTUs showed an advantageous energy release during shortening, which at the QF was mainly due to a higher elongation of the SEE and at the TS mainly to the higher contractile strength. Especially at low activation levels both MTUs showed an advantageous force generation per activation and a higher energy release as compared to the low economy runners.  相似文献   
8.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a common cause of autosomal dominant familial Parkinson''s disease (PD). LRRK2 encodes a multi-domain protein containing GTPase and kinase enzymatic domains. Disease-associated mutations in LRRK2 variably influence enzymatic activity with the common G2019S variant leading to enhanced kinase activity. Mutant LRRK2 induces neuronal toxicity through a kinase-dependent mechanism suggesting that kinase activity is important for mediating the pathogenic effects of LRRK2 mutations. A number of LRRK2 kinase substrates have been identified in vitro but whether they represent authentic physiological substrates in mammalian cells or tissues is not yet clear. The eukaryotic initiation factor 4E (eIF4E)-binding protein, 4E-BP1, was recently identified as a potential substrate of LRRK2 kinase activity in vitro and in Drosophila with phosphorylation occurring at Thr37 and Thr46. Here, we explore a potential interaction of LRRK2 and 4E-BP1 in mammalian cells and brain. We find that LRRK2 can weakly phosphorylate 4E-BP1 in vitro but LRRK2 overexpression is not able to alter endogenous 4E-BP1 phosphorylation in mammalian cells. In mammalian neurons LRRK2 and 4E-BP1 display minimal co-localization, whereas the subcellular distribution, protein complex formation and covalent post-translational modification of endogenous 4E-BP1 are not altered in the brains of LRRK2 knockout or mutant LRRK2 transgenic mice. In the brain, the phosphorylation of 4E-BP1 at Thr37 and Thr46 does not change in LRRK2 knockout or mutant LRRK2 transgenic mice, nor is 4E-BP1 phosphorylation altered in idiopathic or G2019S mutant PD brains. Collectively, our results suggest that 4E-BP1 is neither a major nor robust physiological substrate of LRRK2 in mammalian cells or brain.  相似文献   
9.
Ageing is associated with a higher fatigue resistance during submaximal or maximal fatiguing contractions. The present study aimed to investigate the contribution of the central and peripheral fatigue to the age-related differences in fatigue development of the plantar flexor muscles. Therefore, the voluntary activation, rest twitch moment and voluntary plantar flexor moment were examined before during as well as 2, 5 and 10min after a fatiguing task. This consisted of intermittent isometric submaximal plantar flexor contractions at equal intensity for both young and old adults (considering the age-related differences in muscle inhibition). Consequently, possible differences between young and old adults in voluntary activation during the maximal contraction utilised for determining the intensity of the fatiguing task, which can influence fatigue development, have been taken into account. The plantar flexors moment was calculated using inverse dynamics and the voluntary activation was measured using the twitch interpolation technique. Changes in voluntary activation and rest twitch moment during the fatiguing task were used to assess central and peripheral fatigue, respectively. In both young and old adults, peripheral ( approximately 20%) as well as central fatigue ( approximately 9%) contributed to the time to task failure. Old adults demonstrated greater time to task failure than young ones, but similar voluntary activation behaviour during the fatiguing task. We concluded that, the age-related enhancement in fatigue resistance is not attributable to voluntary activation but is linked to mechanisms located within the working muscle.  相似文献   
10.
The aims of this study were: (a) to examine the effect of falling height on the kinematics of the tibiotalar, talonavicular and calcaneocuboid joints and (b) to study the influence of falling height on the muscle activity of the leg during landings. Six female gymnasts (height: 1.63±0.04 m, weight: 58.21±3.46 kg) participated in this study. All six gymnasts carried out barefoot landings, falling from 1.0, 1.5 and 2.0 m height onto a mat. Three genlocked digital high speed video cameras (250 Hz) captured the motion of the left shank and foot. Surface electromyography (EMG) was used to measure muscle activity (1000 Hz) from five muscles (gastrocnemius medialis, tibialis anterior, peroneus longus, vastus lateralis and hamstrings) of the left leg. The kinematics of the tibiotalar, talonavicular and calcaneocuboid joints were studied. The lower-leg and the foot were modelled by means of a multi-body system, comprising seven rigid bodies. The falling height does not show any influence on the kinematics neither of the tibiotalar nor of the talonavicular joints during landing. The eversion at the calcaneocuboid joint increases with increasing falling height. When augmenting falling height, the myoelectric activity of the muscles of the lower limb increases as well during the pre-activation phase as during the landing itself. The muscles of the lower extremities are capable of stabilizing the tibiotalar and the talonavicular joints actively, restricting their maximal motion by means of a higher activation before and after touchdown. Maximal eversion at the calcaneocuboid joint increases about 52% when landing from 2.0 m.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号