首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1118篇
  免费   60篇
  2023年   13篇
  2022年   29篇
  2021年   53篇
  2020年   36篇
  2019年   30篇
  2018年   51篇
  2017年   42篇
  2016年   62篇
  2015年   65篇
  2014年   86篇
  2013年   96篇
  2012年   106篇
  2011年   77篇
  2010年   49篇
  2009年   28篇
  2008年   51篇
  2007年   30篇
  2006年   36篇
  2005年   29篇
  2004年   32篇
  2003年   19篇
  2002年   18篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   11篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1980年   3篇
  1979年   5篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1968年   2篇
  1965年   2篇
  1936年   2篇
排序方式: 共有1178条查询结果,搜索用时 109 毫秒
1.
2.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
3.
South America has been influenced by different geoclimatic events ever since its separation from Africa. The inland water fauna has evolved in response to the changing landscape. Currently, there are indications of variations in populations, occurring to different degrees that would indicate a clinal pattern in morphology. Among South America's fauna, the freshwater anomuran, Aegla, is an enigmatic group as a result of its endemicity and is composed of only one genus. Of all the species in this family, Aegla uruguayana has the broadest distribution. Its native habitats have been influenced by several marine transgressions during the Miocene–Quaternary Periods; thus, it is likely that their current distribution has been more recent. Its habitat spreads across a number of isolated basins and sub‐basins that display distinct degrees of isolation/connection, making clinal variation patterns in the morphology of this species possible. The present study aimed to evaluate the pattern of carapace shape variation in A. uruguayana and how it relates to the isolation and/or connection of populations from different basins and sub‐basins, allowing the determination of any extant clinal patterns. The specimens studied belong to 25 separate populations, representing all areas in which the species currently exists. A total of 523 crabs were analyzed. We identified 13 landmarks and four semi‐landmarks in the carapace. The aeglids were divided into seven size intervals to avoid an allometry effect. In each size category, shape relationships analyzed by principal component analysis suggest a geographical pattern corresponding to the distribution of the populations studied. An evaluation of covariation between body shape and geographical coordinates reveals a strong pattern and shows that population distribution had a significant effect on species morphology. Additionally, according to covariance analysis, the variation in shape was not associated with the environmental variables studied. We observed a clinal pattern throughout the species distribution, which could be attributed to genetic drift. It is possible that this process is being amplified by the geographical isolation of the basins, differences in environmental characteristics, and low dispersal ability. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 914–930.  相似文献   
4.
5.
Sister-chromatid exchange (SCE) and chromosome aberrations (CA) in bone marrow cells were analyzed after in vivo exposure in mice to 4 aliphatic epoxides, namely 1-naphthyl glycidyl ether (NGE), 1-naphthyl propylene oxide (NPO), 4-nitrophenyl glycidyl ether (NPGE) and trichloropropylene oxide (TCPO). These compounds were selected as being among the most mutagenic aliphatic epoxides in our previous structure-mutagenicity studies with the Ames test. There were significant dose-related increases in SCE and CA results for all 4 epoxides. The order of genotoxicity as established through SCE was NGE greater than NPO greater than NPGE approximately equal to TCPO greater than solvent control. It is of interest that Ames Salmonella results are consistent with in vivo genotoxicity for these compounds. However, only the plate test version of the Ames procedure is consistent with this order of in vivo genotoxicity and neither preincubation Ames testing results nor chemical alkylation rates would have predicted this order.  相似文献   
6.
7.
In the present study we have demonstrated that the murine IL-1 alpha precursor lacks a cleavable signal sequence and does not undergo cotranslational translocation across microsomal membranes in vitro. Culture supernatants of the murine macrophage cell line, P388D, or from normal peritoneal macrophages collected within 0.5 to 3 h after stimulation contained the 33,000 m.w. precursor as the predominant form of IL-1 alpha. Over an 18-h period, the level of low m.w. IL-1 alpha increased as the secreted precursor was processed by extracellular and/or cell surface-associated proteolytic enzymes. The calcium ionophores A23187 and ionomycin were found to dramatically enhance the release and processing of murine and human IL-1. The rapid release of IL-1 in response to a change in the intracellular level of calcium does not appear to be caused by release of a membrane-bound form of the protein, nor is there evidence that IL-1 is packaged and released from cytoskeletal associated secretory granules. In marked contrast, calcium ionophores do not induce secretion of IL-1 from a nonmacrophage cell line that synthesizes but does not normally secrete IL-1. Our results suggest that activated macrophages possess a novel processing independent, possibly calcium-dependent, mechanism that allows for the release of the precursor forms of IL-1 alpha and IL-1 beta.  相似文献   
8.
Identification of IL-1 receptors on human monocytes   总被引:4,自引:0,他引:4  
The expression and functional analysis of IL-1 beta R on human monocytes were investigated. Binding of 125I-IL-1 to human monocytes was found to be specific and saturable. Scatchard plot analysis revealed a single class of receptors with a binding constant of 600 pM and a receptor density of approximately 100 binding sites per cell. At 37 degrees C 54% of the labeled ligand was internalized over 2 h of incubation. Addition of 0.2% sodium azide to the cells reduced ligand internalization to 9% of total bound. Cross-linking studies revealed that the IL-1R in human monocytes had a Mr of 80 kDa. The addition of IL-1 to monocytes caused changes in membrane Ag expression as assessed by flow cytometric analysis. The results of this study identify IL-1 receptors on monocytes and suggest that IL-1 may act as an effector molecule for monocytes by enhancing expression of Ag correlated with cell differentiation and immune function.  相似文献   
9.
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure–function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.  相似文献   
10.
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号