首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1334篇
  免费   24篇
  国内免费   2篇
  1360篇
  2024年   15篇
  2023年   24篇
  2022年   63篇
  2021年   123篇
  2020年   50篇
  2019年   52篇
  2018年   71篇
  2017年   47篇
  2016年   57篇
  2015年   78篇
  2014年   80篇
  2013年   89篇
  2012年   99篇
  2011年   89篇
  2010年   44篇
  2009年   45篇
  2008年   43篇
  2007年   41篇
  2006年   21篇
  2005年   32篇
  2004年   26篇
  2003年   27篇
  2002年   18篇
  2000年   8篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1972年   1篇
  1970年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1962年   1篇
排序方式: 共有1360条查询结果,搜索用时 15 毫秒
1.
2.
The activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain. Mutations of the ZnF domain abolish the ability of TAB2 and TAB3 to bind polyubiquitin chains, as well as their ability to activate TAK1 and IKK. Significantly, replacement of the ZnF domain with a heterologous ubiquitin binding domain restored the ability of TAB2 and TAB3 to activate TAK1 and IKK. We also show that TAB2 binds to polyubiquitinated RIP following TNFalpha stimulation. These results indicate that polyubiquitin binding domains represent a new class of signaling domains that regulate protein kinase activity through a nonproteolytic mechanism.  相似文献   
3.
The objective of the present study was to evaluate the effects of propolis, pollen, and caffeic acid phenethyl ester (CAPE) on tyrosine hydroxylase (TH) activity and total RNA levels of Nω-nitro-L-arginine methyl ester (L-NAME) inhibition of nitric oxide synthase in the heart, adrenal medulla, and hypothalamus of hypertensive male Sprague dawley rats. The TH activity in the adrenal medulla, heart, and hypothalamus of the rats was significantly increased in the L-NAME group vs. control (p < 0.05). Treatment with L-NAME led to a significant increase in blood pressure (BP) in the L-NAME group compared to control (p < 0.05). These data suggest that propolis, pollen, and CAPE may mediate diminished TH activity in the heart, adrenal medulla, and hypothalamus in hypertensive rats. The decreased TH activity may be due to the modulation and synthesis of catecholamines and BP effects. In addition, the binding mechanism of CAPE within the catalytic domain of TH was investigated by means of molecular modeling approaches. These data suggest that the amino acid residues, Glu429 and Ser354 of TH may play a pivotal role in the stabilization of CAPE within the active site as evaluated by molecular dynamics (MD) simulations. Gibbs binding free energy (ΔGbinding) of CAPE in complex with TH was also determined by post-processing MD analysis approaches (i.e. Poisson-Boltzmann Surface Area (MM-PBSA) method).  相似文献   
4.
5.

Background

We combined hospital-based surveillance and health utilization survey data to estimate the incidence of respiratory viral infections associated hospitalization among children aged < 5 years in Bangladesh.

Methods

Surveillance physicians collected respiratory specimens from children aged <5 years hospitalized with respiratory illness and residing in the primary hospital catchment areas. We tested respiratory specimens for respiratory syncytial virus, parainfluenza viruses, human metapneumovirus, influenza, adenovirus and rhinoviruses using rRT-PCR. During 2013, we conducted a health utilization survey in the primary catchment areas of the hospitals to determine the proportion of all hospitalizations for respiratory illness among children aged <5 years at the surveillance hospitals during the preceding 12 months. We estimated the respiratory virus-specific incidence of hospitalization by dividing the estimated number of hospitalized children with a laboratory confirmed infection with a respiratory virus by the population aged <5 years of the catchment areas and adjusted for the proportion of children who were hospitalized at the surveillance hospitals.

Results

We estimated that the annual incidence per 1000 children (95% CI) of all cause associated respiratory hospitalization was 11.5 (10–12). The incidences per 1000 children (95% CI) per year for respiratory syncytial virus, parainfluenza, adenovirus, human metapneumovirus and influenza infections were 3(2–3), 0.5(0.4–0.8), 0.4 (0.3–0.6), 0.4 (0.3–0.6), and 0.4 (0.3–0.6) respectively. The incidences per 1000 children (95%CI) of rhinovirus-associated infections among hospitalized children were 5 (3–7), 2 (1–3), 1 (0.6–2), and 3 (2–4) in 2010, 2011, 2012 and 2013, respectively.

Conclusion

Our data suggest that respiratory viruses are associated with a substantial burden of hospitalization in children aged <5 years in Bangladesh.  相似文献   
6.
7.
The role of niacin’s metabolite, nicotinamide adenine dinucleotide (NAD), in DNA repair via base-excision repair pathway is well documented. We evaluated if niacin deficiency results in genetic instability in normal human fetal lung fibroblasts (MRC-5), and further, does it leads to enhanced accumulation of cigarette smoke–induced genetic damage? MRC-5 cells were grown discretely in niacin-proficient/deficient media, and exposed to nicotine-derived nitrosamine ketone (NNK, a cigarette smoke carcinogen). Niacin deficiency abated the NAD polymerization, augmented the spontaneous induction of micronuclei (MN) and chromosomal aberrations (CA) and raised the expression of 10 genes and suppressed 12 genes involved in different biological functions. NNK exposure resulted in genetic damage as measured by the induction of MN and CA in cells grown in niacin-proficient medium, but the damage became practically marked when niacin-deficient cells were exposed to NNK. NNK exposure raised the expression of 16 genes and suppressed the expression of 56 genes in cells grown in niacin-proficient medium. NNK exposure to niacin-deficient cells raised the expression of eight genes including genes crucial in promoting cancer such as FGFR3 and DUSP1 and suppressed the expression of 33 genes, including genes crucial in preventing the onset and progression of cancer like RASSF2, JUP, and IL24, in comparison with the cells grown in niacin-proficient medium. Overall, niacin deficiency interferes with the DNA damage repair process induced by chemical carcinogens like NNK, and niacin-deficient population are at the higher risk of genetic instability caused by cigarette smoke carcinogen NNK.  相似文献   
8.
    
Mesenchymal stem cells (MSCs) hold promise for cell-based therapy in regenerative medicine. To date, MSCs have been obtained from conventional bone marrow via a highly invasive procedure. Therefore, MSCs are now also isolated from sources such as adipose tissue, cord blood and cord stroma, a subject of growing interest. As the characterization and differentiation potential of adipose-derived MSCs (AD-MSCs) and bone-marrow-derived MSCs (BM-MSCs) have not been documented, we have evaluated and compared the characteristics of both MSC types by qualitative and quantitative analyses. Both cell types show similar morphology and surface protein expression, being positive for stromal-associated markers and negative for hematopoietic and endothelial markers. The colony-forming potential of AD-MSCs is distinctly higher than that of BM-MSCs. Nonetheless, similar adipogenic and osteogenic differentiation is observed in both groups of MSCs. Cytochemical qualitative analysis and calcium mineralization demonstrate higher levels toward osteogenic differentiation in BM-MSCs than in AD-MSCs. On the contrary, the percentage of Nile red oil staining for differentiated adipocytes is higher in AD-MSCs than in BM-MSCs. Quantitative real-time polymerase chain reaction shows similar patterns of osteogenic- and adipogenic-associated gene expression in both cell types. Each of the MSCs respond in functional analysis by exhibiting unique properties at the differentiation level according to their micro-environmental niche. Thus, quantitative analysis might be a valuable means of describing stem cell multipotency, in addition to qualitative investigation.  相似文献   
9.
Autophagy is a preserved cytoplasmic self-degradation process and endorses recycling of intracellular constituents into bioenergetics for the controlling of cellular homeostasis. Functional autophagy process is essential in eliminating cytoplasmic waste components and helps in the recycling of some of its constituents. Studies have revealed that neurodegenerative disorders may be caused by mutations in autophagy-related genes and alterations of autophagic flux. Alzheimer’s disease (AD) is an irrevocable deleterious neurodegenerative disorder characterized by the formation of senile plaques and neurofibrillary tangles (NFTs) in the hippocampus and cortex. In the central nervous system of healthy people, there is no accretion of amyloid β (Aβ) peptides due to the balance between generation and degradation of Aβ. However, for AD patients, the generation of Aβ peptides is higher than lysis that causes accretion of Aβ. Likewise, the maturation of autophagolysosomes and inhibition of their retrograde transport creates favorable conditions for Aβ accumulation. Furthermore, increasing mammalian target of rapamycin (mTOR) signaling raises tau levels as well as phosphorylation. Alteration of mTOR activity occurs in the early stage of AD. In addition, copious evidence links autophagic/lysosomal dysfunction in AD. Compromised mitophagy is also accountable for dysfunctional mitochondria that raises Alzheimer’s pathology. Therefore, autophagic dysfunction might lead to the deposit of atypical proteins in the AD brain and manipulation of autophagy could be considered as an emerging therapeutic target. This review highlights the critical linkage of autophagy in the pathogenesis of AD, and avows a new insight to search for therapeutic target for blocking Alzheimer’s pathogenesis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号