首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3045篇
  免费   176篇
  国内免费   8篇
  2023年   27篇
  2022年   55篇
  2021年   145篇
  2020年   84篇
  2019年   87篇
  2018年   134篇
  2017年   98篇
  2016年   129篇
  2015年   173篇
  2014年   208篇
  2013年   259篇
  2012年   236篇
  2011年   230篇
  2010年   135篇
  2009年   125篇
  2008年   157篇
  2007年   135篇
  2006年   128篇
  2005年   90篇
  2004年   77篇
  2003年   55篇
  2002年   41篇
  2001年   31篇
  2000年   22篇
  1999年   28篇
  1998年   17篇
  1997年   20篇
  1996年   18篇
  1995年   14篇
  1994年   11篇
  1993年   23篇
  1992年   8篇
  1991年   25篇
  1990年   14篇
  1989年   20篇
  1988年   8篇
  1987年   14篇
  1986年   6篇
  1985年   11篇
  1984年   10篇
  1983年   6篇
  1982年   5篇
  1981年   12篇
  1980年   11篇
  1979年   7篇
  1978年   10篇
  1977年   9篇
  1976年   8篇
  1972年   9篇
  1971年   10篇
排序方式: 共有3229条查询结果,搜索用时 46 毫秒
1.
2.
Dyscalculia, dyslexia, and specific language impairment (SLI) are relatively specific developmental learning disabilities in math, reading, and oral language, respectively, that occur in the context of average intellectual capacity and adequate environmental opportunities. Past research has been dominated by studies focused on single impairments despite the widespread recognition that overlapping and comorbid deficits are common. The present study took an epidemiological approach to study the learning profiles of a large school age sample in language, reading, and math. Both general learning profiles reflecting good or poor performance across measures and specific learning profiles involving either weak language, weak reading, weak math, or weak math and reading were observed. These latter four profiles characterized 70% of children with some evidence of a learning disability. Low scores in phonological short-term memory characterized clusters with a language-based weakness whereas low or variable phonological awareness was associated with the reading (but not language-based) weaknesses. The low math only group did not show these phonological deficits. These findings may suggest different etiologies for language-based deficits in language, reading, and math, reading-related impairments in reading and math, and isolated math disabilities.  相似文献   
3.
Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer’s disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.  相似文献   
4.

Background  

We have previously shown that supernatant from Candida albicans (CA) culture contains a Secretory Interleukin (IL)-12 Inhibitory Factor (CA-SIIF), which inhibits IL-12 production by human monocytes. However, the effect of CA-SIIF on secretion of other cytokines by monocytes is unknown, and detailed characterization of this factor has not been performed.  相似文献   
5.
A Ansari  B Schwer 《The EMBO journal》1995,14(16):4001-4009
Understanding the mechanism of pre-mRNA splicing requires the characterization of all components involved. In the present study, we used the genetically and biochemically defined yeast PRP16 protein as a point of departure for the identification of additional factors required for the second catalytic step in vitro. We isolated by glycerol gradient sedimentation spliceosomes that were formed in yeast extracts depleted of PRP16. This procedure separated the spliceosomal complexes containing lariat intermediate and exon 1 from free proteins present in the whole-cell yeast extract. We then supplemented these spliceosomes with purified proteins or yeast extract fractions as a functional assay for second-step splicing factors. We show that SLU7 protein and a novel activity that we named SSF1 (second-step factor 1) were required in concert with PRP16 to promote progression through the second catalytic step of splicing. Taking advantage of a differential ATP requirement for PRP16 and SLU7 function, we show that SLU7 can act after PRP16 in the splicing pathway.  相似文献   
6.
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.  相似文献   
7.
Organelles such as endosomes and the Golgi apparatus play a critical role in regulating signal transmission to the nucleus. Recent experiments have shown that appropriate positioning of these organelles within the intracellular space is critical for effective signal regulation. To understand the mechanism behind this observation, we consider a reaction-diffusion model of an intracellular signaling cascade and investigate the effect on the signaling of intracellular regulation in the form of a small release of phosphorylated signaling protein, kinase, and/or phosphatase. Variational analysis is applied to characterize the most effective regions for the localization of this intracellular regulation. The results demonstrate that signals reaching the nucleus are most effectively regulated by localizing the release of phosphorylated substrate protein and kinase near the nucleus. Phosphatase release, on the other hand, is nearly equally effective throughout the intracellular space. The effectiveness of the intracellular regulation is affected strongly by the characteristics of signal propagation through the cascade. For signals that are amplified as they propagate through the cascade, reactions in the upstream levels of the cascade exhibit much larger sensitivities to regulation by release of phosphorylated substrate protein and kinase than downstream reactions. On the other hand, for signals that decay through the cascade, downstream reactions exhibit larger sensitivity than upstream reactions. For regulation by phosphatase release, all reactions within the cascade show large sensitivity for amplified signals but lose this sensitivity for decaying signals. We use the analysis to develop a simple model of endosome-mediated regulation of cell signaling. The results demonstrate that signal regulation by the modeled endosome is most effective when the endosome is positioned in the vicinity of the nucleus. The present findings may explain at least in part why endosomes in many cell types localize near the nucleus.  相似文献   
8.
We investigated the nature of signal recognition, transport, and secretion of mutant hemagglutinins (HAs) of a human influenza virus by the yeast Saccharomyces cerevisiae. The cDNA sequences encoding variant forms of influenza HA were expressed in S. cerevisiae. The HA polypeptides (HA500 and HA325) that were synthesized with their N-terminal signal peptides were correctly targeted to the membrane compartment where they were glycosylated. In contrast, the HA polypeptides (HA484 and HA308) lacking the signal peptide were expressed in the cytoplasm and did not undergo any glycosidic modification, demonstrating the importance of the heterologous signal sequence in the early steps of translocation in S. cerevisiae. The analysis of the N-terminal amino acid sequence of HA500 and HA325 polypeptides demonstrated the correct cleavage of the signal peptide, indicating the structural compatibility of a heterologous signal peptide for efficient recognition and processing by the yeast translocation machinery. The membrane-sequestered and glycosylated HA polypeptides were relatively stable in S. cerevisiae compared with the signal-minus, nonglycosylated HA molecules. Although both the anchor-minus HA (HA500) and HA1 (HA325) polypeptides were targeted efficiently to the membrane, their glycosylation and transport patterns were shown to be different. During pulse-chase, the HA500 remained cell-associated with no detectable secretion into the extracellular medium, whereas the HA325 secreted into the medium. Furthermore, only the cell-associated and secreted forms of HA325 and not HA500 appeared to have undergone hyperglycosylation with the extensive addition of high-molecular-weight outer-chain mannans. Possible reasons for the observed phenotypic behavior of these two mutant HAs are discussed.  相似文献   
9.
The effects of various insecticides on the mycelial growth, sporulation and conidial germination of Metarhizium anisopliae var. anisopliae isolate E9 were studied in the laboratory. Chlorpyrifos was the most toxic organophosphate to mycelial growth and sporulation at all concentrations. Temephos, malathion and leptophos were highly toxic to sporulation while malathion was the most inhibitory to germination. The carbamates, carbofuran, methomyl and oxamyl were moderately toxic to mycelial growth and sporulation while oxamyl had an adverse effect on germination. The pyrethroids (pyrethrin, permethrin and resmethrin) and the insect growth regulators (diflubenzuron and methoprene) were not inhibitory to the various developmental stages of isolate E9. The chlorinated hydrocarbons (chlordane, lindane and toxaphene) were more deleterious than all other insecticide groups tested. Among the fungicides, benomyl and maneb produced the greatest inhibition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号