首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   8篇
  2022年   2篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   10篇
  2013年   9篇
  2012年   12篇
  2011年   9篇
  2010年   8篇
  2009年   5篇
  2008年   12篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
1.
Thirteen model alpha-ketocarboxylic acids and alpha-dicarbonyl compounds have been observed to be reduced by titanium(III) chloride. The products of these reactions were shown by melting (boiling) points, mixed melting points, derivatives, refractive indices, infrared, and NMR comparisons with authentic compounds or literature information to be the corresponding alpha-hydroxycarboxylic acids or alpha-hydroxyketones.  相似文献   
2.
Experimental data suggest that the B-cell antigen CD20 may play a significant role in the pathogenesis of many diseases including glomerular diseases. These and other findings underpin the central concept of B-cell-depleting therapies that target CD20 antigen as treatments for lupus nephritis, idiopathic membranous nephropathy, focal segmental glomerulosclerosis, cryglobulinemic glomerulonephritis, antibody mediated renal allograft rejection and recurrent glomerulonephritis in renal allograft. Use of rituximab as a B-cell depleting therapy has been associated with clinical improvement and has emerged as a possible adjunct or alternative treatment option in this field of nephrology.  相似文献   
3.
The pro/N‐degron pathway is an evolved protein degradation pathway through the ubiquitin‐proteasome system. It is a vital pathway to attain protein homeostasis inside the liver cells with varying glucose levels. N‐terminal proline exists in more than 300 proteins in Saccharomyces cerevisiae, but only three of them are the gluconeogenic enzymes; isocitrate lyase (Icl1), fructose‐1,6‐bisphosphatase (Fbp1), and malate dehydrogenase (Mdh2). The present in silico study aims to structurally illustrate the binding of Icl1 enzyme to Gid4 ligase concerning its peers; Fbp1 and Mdh2. Based on the molecular docking scores and interactions, one can attribute the binding stability of Gid4 with degrons, to peptides of length six up to eight from the N‐terminal. Moreover, the percent change in the docking score provides a rationale for the unique Gid4‐Icl11‐4 interaction. The present study provides insights on the binding attitude of Gid4 ligase to degrons of different lengths, so one will consider in designing peptidomimetics to target Gid4 ligase.  相似文献   
4.
5.
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential for their ability to respond to insulin stimulation. We prepared two lines of 3T3-L1 cells with low and high expression of myc7-Glut4 and studied its translocation to the plasma membrane upon insulin stimulation, using fluorescence-assisted cell sorting and cell surface biotinylation. In undifferentiated 3T3-L1 preadipocytes, translocation of myc7-Glut4 was low regardless of its expression levels. Coexpression of sortilin increased targeting of myc7-Glut4 to the IRVs, and its insulin responsiveness rose to the maximal levels observed in fully differentiated adipocytes. Sortilin ectopically expressed in undifferentiated cells was translocated to the plasma membrane regardless of the presence or absence of myc7-Glut4. AS160/TBC1D4 is expressed at low levels in preadipocytes but is induced in differentiation and provides an additional mechanism for the intracellular retention and insulin-stimulated release of Glut4.Adipocytes, skeletal muscle cells, and some neurons respond to insulin stimulation by translocating intracellular glucose transporter 4 (Glut4) to the plasma membrane. In all these cells, the insulin-responsive pool of Glut4 is localized in small membrane vesicles, the insulin-responsive vesicles (IRVs; Kandror and Pilch, 2011 ; Bogan, 2012 ). The protein composition of these vesicles has been largely characterized (Kandror and Pilch, 2011 ; Bogan, 2012 ). The IRVs consist predominantly of Glut4, insulin-responsive aminopeptidase (IRAP), sortilin, low-density-lipoprotein receptor–related protein 1 (LRP1), SCAMPs, and VAMP2. Glut4, IRAP, and sortilin physically interact with each other, which might be important for the biogenesis of the IRVs (Shi and Kandror, 2007 ; Shi et al., 2008 ). In addition, the IRVs compartmentalize recycling receptors, such as the transferrin receptor and the IGF2/mannose 6-phosphate receptor, although it is not clear whether these receptors represent obligatory vesicular components or their presence in the IRVs is explained by mass action (Pilch, 2008 ), inefficient sorting, or other reasons.Deciphering of the protein composition of the IRVs is important because it is likely to explain their unique functional property: translocation to the plasma membrane in response to insulin stimulation. Even if we presume that IRV trafficking is controlled by loosely associated peripheral membrane proteins, the latter should still somehow recognize the core vesicular components that create the “biochemical individuality” of this compartment. In spite of our knowledge of the IRV protein composition, however, the identity of the protein(s) that confer insulin sensitivity to these vesicles is unknown.Insulin responsiveness of the IRVs was associated with either IRAP or Glut4. Thus it was shown that Glut4 interacted with the intracellular anchor TUG (Bogan et al., 2003 , 2012 ), whereas IRAP associated with other proteins implemented in the regulation of Glut4 translocation, such as AS160 (Larance et al., 2005 ; Peck et al., 2006 ), p115 (Hosaka et al., 2005 ), tankyrase (Yeh et al., 2007 ), and several others (reviewed in Bogan, 2012 ). Results of these studies, or at least their interpretations, are not necessarily consistent with each other, as the existence of multiple independent anchors for the IRVs is, although possible, unlikely.Ablation of the individual IRV proteins has also led to controversial data. Thus knockout of IRAP decreases total protein levels of Glut4 but does not affect its translocation in the mouse model (Keller et al., 2002 ). On the contrary, knockdown of IRAP in 3T3-L1 adipocytes has a strong inhibitory effect on translocation of Glut4 (Yeh et al., 2007 ). In yet another study, knockdown of IRAP in 3T3-L1 adipocytes did not affect insulin-stimulated translocation of Glut4 but increased its plasma membrane content under basal conditions (Jordens et al., 2010 ). By the same token, total or partial ablation of Glut4 had various effects on expression levels, intracellular localization, and translocation of IRAP (Jiang et al., 2001 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Gross et al., 2004 ; Yeh et al., 2007 ). Knockdown of either sortilin or LRP1 decreased protein levels of Glut4 (Shi and Kandror, 2005 ; Jedrychowski et al., 2010 ).One model that might explain these complicated and somewhat inconsistent results is that depletion of either major integral protein of the IRVs disrupts the network of interactions between vesicular proteins and thus decreases the efficiency of protein sorting into the IRVs (Kandror and Pilch, 2011 ). Correspondingly, the remaining IRV components that cannot be faithfully compartmentalized in the vesicles are either degraded (Jiang et al., 2001 ; Keller et al., 2002 ; Abel et al., 2004 ; Carvalho et al., 2004 ; Shi and Kandror, 2005 ; Yeh et al., 2007 ; Jedrychowski et al., 2010 ) or mistargeted (Jiang et al., 2001 ; Jordens et al., 2010 ), depending on experimental conditions and types of cells used in these studies. In other words, knockdown of any major IRV component may decrease vesicle formation along with insulin responsiveness. Thus, in spite of a large body of literature, the identity of protein(s) that confer insulin responsiveness to the IRVs is unknown.Here we used a gain-of-function approach to address this question. Specifically, we attempted to “build” functional IRVs in undifferentiated 3T3-L1 preadipocytes by forced expression of the relevant proteins. Undifferentiated preadipocytes do not express Glut4 or sortilin and lack IRVs (ElJack et al., 1999 ; Shi and Kandror, 2005 ; Shi et al., 2008 ). Correspondingly, IRAP, which is expressed in these cells, shows low insulin response (Ross et al., 1998 ; Shi et al., 2008 ). We found that ectopic expression of increasing amounts of Glut4 in undifferentiated preadipocytes does not lead to its marked translocation to the plasma membrane upon insulin stimulation. On the contrary, sortilin expressed in undifferentiated preadipocytes was localized in the IRVs and was translocated to the plasma membrane in response to insulin stimulation. Moreover, upon coexpression with Glut4, sortilin dramatically increased its insulin responsiveness to the levels observed in fully differentiated adipocytes. Thus sortilin may represent the key component of the IRVs, which is responsible not only for the formation of vesicles (Shi and Kandror, 2005 ; Ariga et al., 2008 ; Hatakeyama and Kanzaki, 2011 ), but also for their insulin responsiveness. It is worth noting that sortilin levels are significantly decreased in obese and diabetic humans and mice (Kaddai et al., 2009 ). We thus suggest that sortilin may be a novel and important target in the fight against insulin resistance and diabetes.Our experiments also demonstrate that undifferentiated preadipocytes lack a mechanism for the full intracellular retention of Glut4 that can be achieved by ectopic expression of AS160/TBC1D4.  相似文献   
6.
Abstract

A series of some new acetylated S-glycosides of 2-thioxoquinazolin-4-ones, their thiono analogues and 3,1-benzothazin-2,4-dithione derivatives, including a D-glucose and a D-galactose derivatives and a D-xylose, and an L-arabinose derivatives have been synthesized. The conformation and configuration of these carbohydrate derivatives were determined by analysing their 1H and 13C NMR chemical shifts and coupling constants. The biological activity of these compounds has been studied.  相似文献   
7.
Abstract

Red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a prominent pest of stored products particularly cereal flour. Since resistance of this pest to common chemical insecticides is well documented, we were examined the synergistic/antagonistic interaction between Satureja hortensis L., Trachyspermum ammi L., Ziziphora tenuior L., Cuminum cyminum L. and Foeniculum vulgare Miller essential oils, ethanolic extracts and powders with Diatomaceous earth (DE) against T. castaneum adults under laboratory conditions at 27 ± 1 °C, 65 ± 5% RH and continuous darkness. We assayed repellency of ethanolic extracts and essential oils of mentioned plants on the pest. Results showed that DE had high toxicity to the pest. Plant essential oils and ethanolic extracts (except ziziphora) synergized the performance of DE. Nevertheless, plant powders elicited antagonistic effects (except ziziphora that exhibited synergistic effect). The most repellent EO and extract was cumin which exhibited mean repellency value on adult insect equivalent to 92.58 and 51.47%, respectively.  相似文献   
8.
9.
Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought.  相似文献   
10.
Objectives: Nucleotide oligomerization domain 2 (NOD2) and myeloid differentiation protein 2 (MD-2) have crucial roles in the innate immune system. NOD2 is a member of the NOD-like receptor (NLR) family of pattern recognition receptors (PRRs), while MD-2 is a co-receptor for Toll-like receptor 4 (TLR4), which comprises another group of PRRs. Genetic variations in the NOD2 and MD-2 genes may be susceptibility factors to viral pathogens including hepatitis B virus (HBV). We investigated whether polymorphisms at NOD2 (rs2066845 and rs2066844) or at MD-2 (rs6472812 and rs11466004) were associated with susceptibility to HBV infection and advancement to related liver complications in a Saudi Arabian population. Methods: A total of 786 HBV-infected patients and 600 healthy uninfected controls were analyzed in the present study. HBV-infected patients were categorized into three groups based on the clinical stage of the infection: inactive HBV carriers, active HBV carriers, and patients with liver cirrhosis + hepatocellular carcinoma (HCC). Results: All four SNPs were significantly associated with susceptibility to HBV infection although none of the SNPs tested in NOD2 and MD-2 were significantly associated with persistence of HBV infection. We found that HBV-infected patients that were homozygous CC for rs2066845 in the NOD2 gene were at a significantly increased risk of progression to HBV-related liver complications (Odds Ratio = 7.443 and P = 0.044). Furthermore, haplotype analysis found that the rs2066844-rs2066845 C-G and T-G haplotypes at the NOD2 gene and four rs6472812-rs11466004 haplotypes (G-C, G-T, A-C, and A-T) at the MD-2 gene were significantly associated with HBV infection in the affected cohort compared to those found in our control group. Conclusion: We found that the single nucleotide polymorphisms rs2066844 and rs2066845 at NOD2 and rs6472812 and rs11466004 at MD-2 were associated with susceptibility to HBV infection in a Saudi population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号